
AIL Framework for Analysis of Information Leaks
Workshop - A generic analysis open source software

Sami Mokaddem
sami.mokaddem@circl.lu

info@circl.lu

August 4, 2017

Objectives of the workshop

• Learn how to install and start AIL

• Learn how to manage current modules/features

• Learn how to create new modules/features

• Discover a new open source software \o/

2 of 26

Planning

• Introduction to AIL-Framework
◦ Why? and what?
◦ Capabilities and screenshots demo

• How to use AIL-Framework
◦ Installation
◦ Running your own instance
◦ Using the web interface
◦ Managing modules

• How to feed data to AIL-Framework
◦ Feeding your own data

• Writing your own module

• Try it out!

3 of 26

AIL Framework: a framework for Analysis of
Information Leaks

”AIL is a modular framework to analyse potential information
leaks from unstructured data sources like pastes from Pastebin.”

4 of 26

A source of leaks: Paste monitoring (1)

• Example: http://pastebin.com/

◦ Easily storing and sharing text online
◦ Used by programmers and legitimate users
→ Source code & configuration information

• Abused by attackers to store:
◦ List of vulnerable/compromised sites
◦ Software vulnerability (e.g. exploits)
◦ Database dumps
→ User data
→ Credentials
→ Credit card details

◦ ... more and more ...

5 of 26

http://pastebin.com/

A source of leaks: Paste monitoring (1)

• Example: http://pastebin.com/

◦ Easily storing and sharing text online
◦ Used by programmers and legitimate users
→ Source code & configuration information

• Abused by attackers to store:
◦ List of vulnerable/compromised sites
◦ Software vulnerability (e.g. exploits)
◦ Database dumps
→ User data
→ Credentials
→ Credit card details

◦ ... more and more ...

5 of 26

http://pastebin.com/

A source of leaks: Paste monitoring (2)

• Mistakes from users
◦ https://github.com/search?q=remove password&type=Commits&ref=searchresults

6 of 26

Examples of pastes

Paste monitoring at CIRCL: Statistics

• Monitored paste sites: 27
◦ pastebin.com
◦ ideone.com
◦ ...

Table: Statistics for 2016

Pastes 2016 Monthly average Total

Fetched pastes 1 547 094 18 565 124
Security related (TR-46) 21 252

Incidents & investigations 54 649

8 of 26

AIL Framework - History

• AIL initially started as an internship project (2014) to evaluate the
feasibility to automate the analysis of (un)structured information
to find leaks.

• In 2017, AIL framework is an open source software in Python. The
software is actively used (and maintained) by CIRCL.

• Extending AIL to add a new analysis module can be done in 50
lines of Python.

• The framework supports multi-processors/cores by default.
Any analysis module can be started multiple times to support
faster processing during peak times or bulk import.

9 of 26

AIL Framework - History

• AIL initially started as an internship project (2014) to evaluate the
feasibility to automate the analysis of (un)structured information
to find leaks.

• In 2017, AIL framework is an open source software in Python. The
software is actively used (and maintained) by CIRCL.

• Extending AIL to add a new analysis module can be done in 50
lines of Python.

• The framework supports multi-processors/cores by default.
Any analysis module can be started multiple times to support
faster processing during peak times or bulk import.

9 of 26

Current capabilities

• Multiple concurrent data input

• Extracting creadit cards numbers, credentials, phone
numbers, ...

• Extracting and validating potential hostnames

• Keep track of duplicates

• Full-text indexer to index unstructured information

• Terms, sets and regex tracking and occurences

• Sentiment/Mood analyser for incoming data

• Modules manager

• And many more

10 of 26

AIL: Following a notification (0) - Dashboard

11 of 26

AIL: Following a notification (1) - Searching

12 of 26

AIL: Following a notification (2) - Metadata

13 of 26

AIL: Following a notification (3) - Browsing content

14 of 26

AIL: Following a notification (3) - Browsing content

15 of 26

Installation

Setting up AIL-Framework

1 git clone https://github.com/CIRCL/AIL-framework.git

2 cd AIL-framework

3 ./installing_deps.sh

4 cd var/www/

5 ./update_thirdparty.sh

16 of 26

Running your own instance

Accessing the environment and Starting AIL

1 cd ~/AIL-Framework/

2 . ./AILENV/bin/activate

3 cd bin/

4 ./LAUNCH

5 # check options 1->5

Starting the web interface

1 cd $AILENV

2 cd var/www/

3 ./Flask_server.py

4 # -> Browse http://localhost:7000/

17 of 26

Running your own instance

Accessing the environment and Starting AIL

1 cd ~/AIL-Framework/

2 . ./AILENV/bin/activate

3 cd bin/

4 ./LAUNCH

5 # check options 1->5

Starting the web interface

1 cd $AILENV

2 cd var/www/

3 ./Flask_server.py

4 # -> Browse http://localhost:7000/

17 of 26

Managing your modules: Old fashion way

Access the script screen

1 screen -r Script

Table: GNU screen shortcuts

Shortcut Action

C-a d detach screen

C-a c Create new window

C-a n next window screen

C-a p previous window screen

18 of 26

Managing your modules: Using the helper

19 of 26

Feeding AIL

There are differents way to feed AIL with data:

1. Be a collaborator of CIRCL and ask to access our feed

2. Setup pystemon and use the custom feeder
◦ pystemon will collect pastes for you

3. Feed your own data using the import dir.py script

20 of 26

Feeding AIL with your own data - import dir.py

1. Change your local configuration bin/package/config.cfg
◦ change address of ZMQ Global to 127.0.0.1:5556
◦ (is already set by default)

2. launch import dir.py with de directory you want to import
◦ import dir.py -d dir path

3. Watch your data being feed to AIL

• You can access the CIRCL feed during the SHA2017

• Just leave ZMQ Global->address to tcp://crf.circl.lu:5556

21 of 26

Feeding AIL with your own data - import dir.py

1. Change your local configuration bin/package/config.cfg
◦ change address of ZMQ Global to 127.0.0.1:5556
◦ (is already set by default)

2. launch import dir.py with de directory you want to import
◦ import dir.py -d dir path

3. Watch your data being feed to AIL

• You can access the CIRCL feed during the SHA2017

• Just leave ZMQ Global->address to tcp://crf.circl.lu:5556

21 of 26

Feeding AIL with your own data - import dir.py

1. Change your local configuration bin/package/config.cfg
◦ change address of ZMQ Global to 127.0.0.1:5556
◦ (is already set by default)

2. launch import dir.py with de directory you want to import
◦ import dir.py -d dir path

3. Watch your data being feed to AIL

• You can access the CIRCL feed during the SHA2017

• Just leave ZMQ Global->address to tcp://crf.circl.lu:5556

21 of 26

AIL - Add your own module

Choose where to locate your module in the data flow:

Then, modify bin/package/modules.cfg accordingly
22 of 26

Writing your own modules - /bin/template.py

1 import time

2 from pubsublogger import publisher

3 from Helper import Process

4 if __name__ == ’__main__ ’:

5 # Port of the redis instance used by pubsublogger

6 publisher.port = 6380

7 # Script is the default channel used for the modules.

8 publisher.channel = ’Script ’

9 # Section name in bin/packages/modules.cfg

10 config_section = ’<section name >’

11 # Setup the I/O queues

12 p = Process(config_section)

13 # Sent to the logging a description of the module

14 publisher.info("<description of the module >")

15 # Endless loop getting messages from the input queue

16 while True:

17 # Get one message from the input queue

18 message = p.get_from_set ()

19 if message is None:

20 publisher.debug("{} queue is empty , waiting".format(config_section))

21 time.sleep (1)

22 continue

23 # Do something with the message from the queue

24 something_has_been_done = do_something(message)

25 23 of 26

AIL - Add your own web interface

1. launch var/www/create new web module.py

2. Enter the module’s name

3. A template and flask skeleton has been created for your new
webpage in var/www/modules/

4. You can start coding!

24 of 26

How to contribute

• Feel free to fork the code, play with it, make some patches or add
additional analysis modules.

• To contribute your module, feel free to pull your contribution.

• That’s it!

25 of 26

How to contribute

• Feel free to fork the code, play with it, make some patches or add
additional analysis modules.

• To contribute your module, feel free to pull your contribution.

• That’s it!

25 of 26

How to contribute

• Feel free to fork the code, play with it, make some patches or add
additional analysis modules.

• To contribute your module, feel free to pull your contribution.

• That’s it!

25 of 26

Conclusion

• Building AIL helped us to find additional leaks which cannot be
found using manual analysis and improve the time to detect
duplicate/recycled leaks.

→ Therefore quicker response time to assist and/or inform
proactively affected constituents.

26 of 26

