mirror of https://github.com/CIRCL/AIL-framework
166 lines
5.8 KiB
Python
Executable File
166 lines
5.8 KiB
Python
Executable File
#!/usr/bin/env python2
|
|
# -*-coding:UTF-8 -*
|
|
|
|
"""
|
|
The Duplicate module
|
|
====================
|
|
|
|
This huge module is, in short term, checking duplicates.
|
|
|
|
Requirements:
|
|
-------------
|
|
|
|
|
|
"""
|
|
import redis
|
|
import os
|
|
import time
|
|
from packages import Paste
|
|
from pubsublogger import publisher
|
|
from pybloomfilter import BloomFilter
|
|
|
|
from Helper import Process
|
|
|
|
if __name__ == "__main__":
|
|
publisher.port = 6380
|
|
publisher.channel = "Script"
|
|
|
|
config_section = 'Duplicates'
|
|
|
|
p = Process(config_section)
|
|
|
|
# REDIS #
|
|
# DB OBJECT & HASHS ( DISK )
|
|
# FIXME increase flexibility
|
|
dico_redis = {}
|
|
for year in xrange(2013, 2017):
|
|
for month in xrange(0, 16):
|
|
dico_redis[str(year)+str(month).zfill(2)] = redis.StrictRedis(
|
|
host=p.config.get("Redis_Level_DB", "host"), port=year,
|
|
db=month)
|
|
#print("dup: "+str(year)+str(month).zfill(2)+"\n")
|
|
|
|
# FUNCTIONS #
|
|
publisher.info("Script duplicate started")
|
|
|
|
set_limit = 100
|
|
bloompath = os.path.join(os.environ['AIL_HOME'],
|
|
p.config.get("Directories", "bloomfilters"))
|
|
|
|
bloop_path_set = set()
|
|
while True:
|
|
try:
|
|
super_dico = {}
|
|
hash_dico = {}
|
|
dupl = []
|
|
nb_hash_current = 0
|
|
|
|
x = time.time()
|
|
|
|
message = p.get_from_set()
|
|
if message is not None:
|
|
path = message
|
|
PST = Paste.Paste(path)
|
|
else:
|
|
publisher.debug("Script Attribute is idling 10s")
|
|
time.sleep(10)
|
|
continue
|
|
|
|
PST._set_p_hash_kind("md5")
|
|
|
|
# Assignate the correct redis connexion
|
|
r_serv1 = dico_redis[PST.p_date.year + PST.p_date.month]
|
|
|
|
# Creating the bloom filter name: bloomyyyymm
|
|
filebloompath = os.path.join(bloompath, 'bloom' + PST.p_date.year +
|
|
PST.p_date.month)
|
|
|
|
if os.path.exists(filebloompath):
|
|
bloom = BloomFilter.open(filebloompath)
|
|
else:
|
|
bloom = BloomFilter(100000000, 0.01, filebloompath)
|
|
bloop_path_set.add(filebloompath)
|
|
|
|
# UNIQUE INDEX HASHS TABLE
|
|
r_serv0 = dico_redis["201600"]
|
|
r_serv0.incr("current_index")
|
|
index = r_serv0.get("current_index")+str(PST.p_date)
|
|
# HASHTABLES PER MONTH (because of r_serv1 changing db)
|
|
r_serv1.set(index, PST.p_path)
|
|
r_serv1.sadd("INDEX", index)
|
|
|
|
# For each bloom filter
|
|
opened_bloom = []
|
|
for bloo in bloop_path_set:
|
|
# Opening blooms
|
|
opened_bloom.append(BloomFilter.open(bloo))
|
|
|
|
# For each hash of the paste
|
|
for line_hash in PST._get_hash_lines(min=5, start=1, jump=0):
|
|
nb_hash_current += 1
|
|
|
|
# Adding the hash in Redis & limiting the set
|
|
if r_serv1.scard(line_hash) <= set_limit:
|
|
r_serv1.sadd(line_hash, index)
|
|
r_serv1.sadd("HASHS", line_hash)
|
|
# Adding the hash in the bloom of the month
|
|
bloom.add(line_hash)
|
|
|
|
# Go throught the Database of the bloom filter (of the month)
|
|
for bloo in opened_bloom:
|
|
if line_hash in bloo:
|
|
db = bloo.name[-6:]
|
|
# Go throught the Database of the bloom filter (month)
|
|
r_serv_bloom = dico_redis[db]
|
|
|
|
# set of index paste: set([1,2,4,65])
|
|
hash_current = r_serv_bloom.smembers(line_hash)
|
|
# removing itself from the list
|
|
hash_current = hash_current - set([index])
|
|
|
|
# if the hash is present at least in 1 files
|
|
# (already processed)
|
|
if len(hash_current) != 0:
|
|
hash_dico[line_hash] = hash_current
|
|
|
|
# if there is data in this dictionnary
|
|
if len(hash_dico) != 0:
|
|
super_dico[index] = hash_dico
|
|
|
|
###########################################################################
|
|
|
|
# if there is data in this dictionnary
|
|
if len(super_dico) != 0:
|
|
# current = current paste, phash_dico = {hash: set, ...}
|
|
occur_dico = {}
|
|
for current, phash_dico in super_dico.items():
|
|
# phash = hash, pset = set([ pastes ...])
|
|
for phash, pset in hash_dico.items():
|
|
|
|
for p_fname in pset:
|
|
occur_dico.setdefault(p_fname, 0)
|
|
# Count how much hash is similar per file occuring
|
|
# in the dictionnary
|
|
if occur_dico[p_fname] >= 0:
|
|
occur_dico[p_fname] = occur_dico[p_fname] + 1
|
|
|
|
for paste, count in occur_dico.items():
|
|
percentage = round((count/float(nb_hash_current))*100, 2)
|
|
if percentage >= 50:
|
|
dupl.append((paste, percentage))
|
|
|
|
# Creating the object attribute and save it.
|
|
to_print = 'Duplicate;{};{};{};'.format(
|
|
PST.p_source, PST.p_date, PST.p_name)
|
|
if dupl != []:
|
|
PST.__setattr__("p_duplicate", dupl)
|
|
PST.save_attribute_redis("p_duplicate", dupl)
|
|
publisher.info('{}Detected {}'.format(to_print, len(dupl)))
|
|
|
|
y = time.time()
|
|
|
|
publisher.debug('{}Processed in {} sec'.format(to_print, y-x))
|
|
except IOError:
|
|
print "CRC Checksum Failed on :", PST.p_path
|
|
publisher.error('{}CRC Checksum Failed'.format(to_print))
|