mirror of https://github.com/CIRCL/AIL-framework
190 lines
6.3 KiB
Python
Executable File
190 lines
6.3 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# -*-coding:UTF-8 -*
|
|
"""
|
|
Sentiment analyser module.
|
|
It takes its inputs from 'global'.
|
|
|
|
The content is analysed if the length of the line is
|
|
above a defined threshold (get_p_content_with_removed_lines).
|
|
This is done because NLTK sentences tokemnizer (sent_tokenize) seems to crash
|
|
for long lines (function _slices_from_text line#1276).
|
|
|
|
|
|
nltk.sentiment.vader module credit:
|
|
Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014.
|
|
|
|
"""
|
|
|
|
##################################
|
|
# Import External packages
|
|
##################################
|
|
import os
|
|
import sys
|
|
import time
|
|
import datetime
|
|
import calendar
|
|
import redis
|
|
import json
|
|
import signal
|
|
from nltk.sentiment.vader import SentimentIntensityAnalyzer
|
|
from nltk import tokenize, download
|
|
|
|
sys.path.append(os.environ['AIL_BIN'])
|
|
##################################
|
|
# Import Project packages
|
|
##################################
|
|
from modules.abstract_module import AbstractModule
|
|
from lib.objects.Items import Item
|
|
from lib import ConfigLoader
|
|
|
|
|
|
class TimeoutException(Exception):
|
|
pass
|
|
|
|
def timeout_handler(signum, frame):
|
|
raise TimeoutException
|
|
|
|
signal.signal(signal.SIGALRM, timeout_handler)
|
|
|
|
## TODO: REFACTOR MODULE + CLEAN HISTORY
|
|
class SentimentAnalysis(AbstractModule):
|
|
"""
|
|
SentimentAnalysis module for AIL framework
|
|
"""
|
|
|
|
# Config Variables
|
|
accepted_Mime_type = ['text/plain']
|
|
line_max_length_threshold = 1000
|
|
|
|
def __init__(self):
|
|
super(SentimentAnalysis, self).__init__()
|
|
|
|
self.sentiment_lexicon_file = ConfigLoader.ConfigLoader().get_config_str("Directories", "sentiment_lexicon_file")
|
|
|
|
# REDIS_LEVEL_DB #
|
|
self.db = ConfigLoader.ConfigLoader().get_redis_conn("_Sentiment")
|
|
|
|
self.time1 = time.time()
|
|
|
|
# Waiting time in secondes between to message proccessed
|
|
self.pending_seconds = 1
|
|
|
|
# Send module state to logs
|
|
self.redis_logger.info(f"Module {self.module_name} initialized")
|
|
|
|
def compute(self, message):
|
|
# Max time to compute one entry
|
|
signal.alarm(60)
|
|
try:
|
|
self.analyse(message)
|
|
except TimeoutException:
|
|
self.redis_logger.debug(f"{message} processing timeout")
|
|
else:
|
|
signal.alarm(0)
|
|
|
|
def get_p_content_with_removed_lines(self, threshold, item_content):
|
|
num_line_removed = 0
|
|
line_length_threshold = threshold
|
|
string_content = ""
|
|
f = item_content
|
|
for line_id, line in enumerate(f):
|
|
length = len(line)
|
|
|
|
if length < line_length_threshold:
|
|
string_content += line
|
|
else:
|
|
num_line_removed += 1
|
|
|
|
return num_line_removed, string_content
|
|
|
|
def analyse(self, message):
|
|
|
|
item = Item(message)
|
|
|
|
# get content with removed line + number of them
|
|
num_line_removed, p_content = self.get_p_content_with_removed_lines(SentimentAnalysis.line_max_length_threshold,
|
|
item.get_content())
|
|
provider = item.get_source()
|
|
p_date = item.get_date()
|
|
p_MimeType = item.get_mimetype()
|
|
|
|
# Perform further analysis
|
|
if p_MimeType == "text/plain":
|
|
if self.isJSON(p_content):
|
|
p_MimeType = "JSON"
|
|
|
|
if p_MimeType in SentimentAnalysis.accepted_Mime_type:
|
|
self.redis_logger.debug(f'Accepted :{p_MimeType}')
|
|
|
|
the_date = datetime.date(int(p_date[0:4]), int(p_date[4:6]), int(p_date[6:8]))
|
|
the_time = datetime.datetime.now()
|
|
the_time = datetime.time(getattr(the_time, 'hour'), 0, 0)
|
|
combined_datetime = datetime.datetime.combine(the_date, the_time)
|
|
timestamp = calendar.timegm(combined_datetime.timetuple())
|
|
|
|
try:
|
|
sentences = tokenize.sent_tokenize(p_content)
|
|
except:
|
|
# use the NLTK Downloader to obtain the resource
|
|
download('punkt')
|
|
sentences = tokenize.sent_tokenize(p_content)
|
|
|
|
if len(sentences) > 0:
|
|
avg_score = {'neg': 0.0, 'neu': 0.0, 'pos': 0.0, 'compoundPos': 0.0, 'compoundNeg': 0.0}
|
|
neg_line = 0
|
|
pos_line = 0
|
|
sid = SentimentIntensityAnalyzer(self.sentiment_lexicon_file)
|
|
for sentence in sentences:
|
|
ss = sid.polarity_scores(sentence)
|
|
for k in sorted(ss):
|
|
if k == 'compound':
|
|
if ss['neg'] > ss['pos']:
|
|
avg_score['compoundNeg'] += ss[k]
|
|
neg_line += 1
|
|
else:
|
|
avg_score['compoundPos'] += ss[k]
|
|
pos_line += 1
|
|
else:
|
|
avg_score[k] += ss[k]
|
|
|
|
|
|
for k in avg_score:
|
|
if k == 'compoundPos':
|
|
avg_score[k] = avg_score[k] / (pos_line if pos_line > 0 else 1)
|
|
elif k == 'compoundNeg':
|
|
avg_score[k] = avg_score[k] / (neg_line if neg_line > 0 else 1)
|
|
else:
|
|
avg_score[k] = avg_score[k] / len(sentences)
|
|
|
|
|
|
# In redis-levelDB: {} = set, () = K-V
|
|
# {Provider_set -> provider_i}
|
|
# {Provider_TimestampInHour_i -> UniqID_i}_j
|
|
# (UniqID_i -> PasteValue_i)
|
|
|
|
self.db.sadd('Provider_set', provider)
|
|
|
|
provider_timestamp = provider + '_' + str(timestamp)
|
|
self.db.incr('UniqID')
|
|
UniqID = self.db.get('UniqID')
|
|
self.redis_logger.debug(f'{provider_timestamp}->{UniqID}dropped{num_line_removed}lines')
|
|
self.db.sadd(provider_timestamp, UniqID)
|
|
self.db.set(UniqID, avg_score)
|
|
else:
|
|
self.redis_logger.debug(f'Dropped:{p_MimeType}')
|
|
|
|
|
|
def isJSON(self, content):
|
|
try:
|
|
json.loads(content)
|
|
return True
|
|
|
|
except Exception:
|
|
return False
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
module = SentimentAnalysis()
|
|
module.run()
|