
Technical Note

Security assessment of
Raspberry Pi boot sequence

Author: Marc Durvaux
Version: 1.0
Date: 08/01/2015

1 Abstract
This technical note reports the results of an analysis of the Rapsberry Pi boot sequence,
which aims at identifying a possible way of injecting malicious code during this phase.
Under the assumption that the attempt of malicious code injection is performed through the
connection of USB peripheral, the analysis shows that the risk is extremely limited given
that the ROM boot sequence does not connect another device than a keyboard.

2 Revision history
Version Date Author Description

1.0 08/01/2015 Marc Durvaux Initial release

3 Table of content
1 Abstract...2
2 Revision history...2
3 Table of content...2
4 Reference documents...3
5 Software and Hardware configuration..3
6 Tests performed..4

6.1 Verification of required boot files...4
6.2 Observed activity during the boot process..5

6.2.1 Sequence from power-up to aborted boot..5
6.2.2 Sequence from power-up to boot...7

7 Conclusion..7

2 of 7

4 Reference documents
(1) Raspberry Pi Foundation

 http://www.raspberrypi.org/trademark-rules/
 http://www.raspberrypi.org/about/
 http://www.raspberrypi.org/documentation/

(2) Raspberry Pi architecture
 http://meseec.ce.rit.edu/551-projects/fall2013/2-1.pdf

(3) Raspberry Pi Hardware
http://elinux.org/index.php?title=RPi_Hardware

(4) Raspberry Pi Documentation
 https://github.com/raspberrypi/documentation
 https://github.com/raspberrypi/documentation/tree/master/hardware/raspberrypi/schematics

(5) Raspberry Pi boot process
 http://wiki.beyondlogic.org/index.php?title=Understanding_RaspberryPi_Boot_Process
Note: although this link provides useful information, the tests have shown that it is not completely
accurate (e.g. the third stage, start.elf, is loaded even if the file bootcode.bin is missing)

(6) Raspberry Pi ARM based bare metal examples
 https://github.com/dwelch67/raspberrypi

(7) NOOBS (New Out of Box Software) documentation
https://github.com/raspberrypi/noobs

5 Software and Hardware configuration
The tests have been performed under Raspbian installed by NOOBS v 1.3.10.
The hardware platform was a Raspberry Pi model B.

Signal probes have been connected to the following SD connector pins:
Pin Signal (One-Bit SD Bus Mode) Signal

(Four-Bit SD Mode)
Logic analyzer

channel

9 Unused SD Serial Data 2 1 - Brown

1 Card / Non-SPI Mode Detection SD Serial Data 3 2 – Red

2 Command / Response Command / Response 3 - Orange

A breakout box has been inserted between the Raspberry Pi USB host connector and the
USB peripheral (keyboard or storage key), to allow for probing the D+ signal on the logic
analyzer channel 0 (white)

3 of 7

https://github.com/raspberrypi/noobs
https://github.com/dwelch67/raspberrypi
http://wiki.beyondlogic.org/index.php?title=Understanding_RaspberryPi_Boot_Process
https://github.com/raspberrypi/documentation/tree/master/hardware/raspberrypi/schematics
https://github.com/raspberrypi/documentation
http://elinux.org/index.php?title=RPi_Hardware
http://meseec.ce.rit.edu/551-projects/fall2013/2-1.pdf
http://www.raspberrypi.org/documentation/
http://www.raspberrypi.org/about/
http://www.raspberrypi.org/trademark-rules/

6 Tests performed

6.1 Verification of required boot files
Note: A backup directory has been created in the BOOT volume on the SD card in order to
deactivate selected files without erasing them.

Reference (6) seems to provide the more accurate information on the required boot files in
the “README” file :

From what we know so far there is a gpu on chip which:

1) boots off of an on chip rom of some sort
2) reads the sd card and looks for additional gpu specific boot files
bootcode.bin and start.elf in the root dir of the first partition
(fat32 formatted, loader.bin no longer used/required)
3) in the same dir it looks for config.txt which you can do things like
change the arm speed from the default 700MHz, change the address where
to load kernel.img, and many others
4) it reads kernel.img the arm boot binary file and copies it to memory
5) releases reset on the arm such that it runs from the address where
the kernel.img data was written

The memory is split between the GPU and the ARM, I believe the default
is to split the memory in half. And there are ways to change that
split (to give the ARM more). Not going to worry about that here.

From the ARMs perspective the kernel.img file is loaded, by default,
to address 0x8000. (there are ways to change that, not going to worry
about that right now).

Test results :
• when the file “bootcode.bin” is missing, the boot process proceeds further.
• when the file “start.elf” is missing, the boot process hangs.

Conclusion :
For the following tests, when an aborted boot is required, both “bootcode.bin” and all
“start*.elf” files will be moved to the backup directory
(* denotes a wildcard, the refer to the following files : start.elf, start_x.elf, start_cd.elf)

4 of 7

6.2 Observed activity during the boot process
Note : the timings measured from the power-up include the settling of the power supply
and are measured manually. Hence the estimated precision is about 0.5 s.

6.2.1 Sequence from power-up to aborted boot

• T0 + 3.8 s : start of SD card access (figure 1, channels 1 to 3)
• T0 + 11 s : short USB activity (figures 2 and 3, channel 0)

◦ figure 2 shows the activity when a USB keyboard is connected
◦ figure 3 shows the activity when a USB key, formatted in VFAT is connected.

figure 1

5 of 7

figure 2

figure 3

6 of 7

6.2.2 Sequence from power-up to boot

• T0 + 3.8 s : start of SD card access
• T0 + 11 s : short USB activity
• T0 + 12 s : start of Linux boot

The recorded waveforms do not differ from above figures 1 to 3.

7 Conclusion
The tests performed in section 6 show that the only USB activity detected during the boot
phase, prior the operating system boot, is related to the keyboard.
From the Raspberry Pi documentation (reference 7), this is related to the optional boot
selector. Hence there is no identified opportunity to launch a malicious code located on a
USB key during the boot sequence.

7 of 7

	1 Abstract
	2 Revision history
	3 Table of content
	4 Reference documents
	5 Software and Hardware configuration
	6 Tests performed
	6.1 Verification of required boot files
	6.2 Observed activity during the boot process
	6.2.1 Sequence from power-up to aborted boot
	6.2.2 Sequence from power-up to boot

	7 Conclusion

