
PyCIRCLean: a versatile Python framework
to check and/or sanitize files

TLP:WHITE

info@circl.lu

March 10, 2017



Overview

• Aims to be used in dedicated security applications
to sanitize documents from hostile to trusted
environments.

• Generic way to handle large collections of files

• Generate audit logs

• Comes with many helpers

• Defensive programming

2 of 13



Implementation

• Copies files from a directory (source) to an other
one (destination)

• Computes hashes (sha256) of all the files in the
source

• Creates a directory tree on the destination directory

• Gets the mime type of each file

3 of 13



Logging and reporting

• Every processing is logged

• Medatata (filetype, size, name, extension, ...) are
kept

• Any error occurring during the processing is stored

• WiP: generating a human readable report
(Markdown, HTML)

4 of 13



Action of the main script

• Discard known extensions with active content
• Verifies if the extension corresponds to the

mimetype (polyglot files)
• Force extension on supposedly text files
• Discards windows executables
• Discard Office (Libreoffice and Windows Office)

document with active content
• Discard PDFs with active content
• Unpack archives and process content
• Extract metadata from images
5 of 13



Plus / Minus

• Plus
◦ (almost) Pure python
◦ Reliable
◦ Fast

• Minus
◦ Does not block a 0 day in a non-active content
◦ Medium level of false positive (non-malicious active

content)

6 of 13



Implement your own module - FileBase

• The default constructors gets the mime type of the
file and initialize the log of the file

• Surcharge the constructor accordingly to your needs

• Has helpers to get and set information on the file
being processed

• Can force the extension of the file when copied

• All those functions have to be used in order to
handle the files accordingly to your requirements

7 of 13



Implement your own module -
KittenGroomerBase

• The default constructor cleans the destination
directory

• Starts the general logging

• Iterate through all the files on the src key

• Has helpers to handle safely the file management

8 of 13



Implement your own module -
GroomerLogger

• The default constructor initialize the log files

• Creates a tree representation of the content,
computes the hashes

• Stores the logs for each processed file

9 of 13



Hardware implementation -
RaspberryPi

• Standalone device

• Easy to carry around

• Not used for anything else

• Cheap and easy to setup

10 of 13



Security considerations

• Assuming the content might be malicious

• Parsing is very vulnerable to exploits

• Unpacking archives and recursion need to stop
(halting problem)

• KISS, default features and ease to update

• Distrust everything (your code, and other people’s
code)

11 of 13



Defensive programing - Questions

• How can an attacker interact with the code? With
the device?

• What are the most critical part of the project?

• How to handle unexpected behavior?

• What happen if there is an unpatched vulnerability?

12 of 13



Defensive programming - Remediations

• Bare Debian for Raspberry

• Few dependencies

• Image read only

• Code runs as user

• Small code base

13 of 13


