From e95c8a85fb2041425aba6a68ad101b1fcba885bf Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Rapha=C3=ABl=20Vinot?= Date: Thu, 25 Aug 2022 10:40:57 +0200 Subject: [PATCH] chg: Use more recent config file for redis --- cache/cache.conf | 1307 +++++++++++++++++++++++++++++++++------- indexing/indexing.conf | 922 +++++++++++++++++++++------- 2 files changed, 1798 insertions(+), 431 deletions(-) diff --git a/cache/cache.conf b/cache/cache.conf index fde1d0a..e962809 100644 --- a/cache/cache.conf +++ b/cache/cache.conf @@ -24,7 +24,7 @@ # to customize a few per-server settings. Include files can include # other files, so use this wisely. # -# Notice option "include" won't be rewritten by command "CONFIG REWRITE" +# Note that option "include" won't be rewritten by command "CONFIG REWRITE" # from admin or Redis Sentinel. Since Redis always uses the last processed # line as value of a configuration directive, you'd better put includes # at the beginning of this file to avoid overwriting config change at runtime. @@ -32,8 +32,17 @@ # If instead you are interested in using includes to override configuration # options, it is better to use include as the last line. # +# Included paths may contain wildcards. All files matching the wildcards will +# be included in alphabetical order. +# Note that if an include path contains a wildcards but no files match it when +# the server is started, the include statement will be ignored and no error will +# be emitted. It is safe, therefore, to include wildcard files from empty +# directories. +# # include /path/to/local.conf # include /path/to/other.conf +# include /path/to/fragments/*.conf +# ################################## MODULES ##################################### @@ -46,55 +55,92 @@ ################################## NETWORK ##################################### # By default, if no "bind" configuration directive is specified, Redis listens -# for connections from all the network interfaces available on the server. +# for connections from all available network interfaces on the host machine. # It is possible to listen to just one or multiple selected interfaces using # the "bind" configuration directive, followed by one or more IP addresses. +# Each address can be prefixed by "-", which means that redis will not fail to +# start if the address is not available. Being not available only refers to +# addresses that does not correspond to any network interface. Addresses that +# are already in use will always fail, and unsupported protocols will always BE +# silently skipped. # # Examples: # -# bind 192.168.1.100 10.0.0.1 -# bind 127.0.0.1 ::1 +# bind 192.168.1.100 10.0.0.1 # listens on two specific IPv4 addresses +# bind 127.0.0.1 ::1 # listens on loopback IPv4 and IPv6 +# bind * -::* # like the default, all available interfaces # # ~~~ WARNING ~~~ If the computer running Redis is directly exposed to the # internet, binding to all the interfaces is dangerous and will expose the # instance to everybody on the internet. So by default we uncomment the -# following bind directive, that will force Redis to listen only into -# the IPv4 loopback interface address (this means Redis will be able to -# accept connections only from clients running into the same computer it -# is running). +# following bind directive, that will force Redis to listen only on the +# IPv4 and IPv6 (if available) loopback interface addresses (this means Redis +# will only be able to accept client connections from the same host that it is +# running on). # # IF YOU ARE SURE YOU WANT YOUR INSTANCE TO LISTEN TO ALL THE INTERFACES -# JUST COMMENT THE FOLLOWING LINE. +# COMMENT OUT THE FOLLOWING LINE. +# +# You will also need to set a password unless you explicitly disable protected +# mode. # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -bind 127.0.0.1 +bind 127.0.0.1 -::1 + +# By default, outgoing connections (from replica to master, from Sentinel to +# instances, cluster bus, etc.) are not bound to a specific local address. In +# most cases, this means the operating system will handle that based on routing +# and the interface through which the connection goes out. +# +# Using bind-source-addr it is possible to configure a specific address to bind +# to, which may also affect how the connection gets routed. +# +# Example: +# +# bind-source-addr 10.0.0.1 # Protected mode is a layer of security protection, in order to avoid that # Redis instances left open on the internet are accessed and exploited. # -# When protected mode is on and if: -# -# 1) The server is not binding explicitly to a set of addresses using the -# "bind" directive. -# 2) No password is configured. -# -# The server only accepts connections from clients connecting from the -# IPv4 and IPv6 loopback addresses 127.0.0.1 and ::1, and from Unix domain -# sockets. +# When protected mode is on and the default user has no password, the server +# only accepts local connections from the IPv4 address (127.0.0.1), IPv6 address +# (::1) or Unix domain sockets. # # By default protected mode is enabled. You should disable it only if # you are sure you want clients from other hosts to connect to Redis -# even if no authentication is configured, nor a specific set of interfaces -# are explicitly listed using the "bind" directive. +# even if no authentication is configured. protected-mode yes +# Redis uses default hardened security configuration directives to reduce the +# attack surface on innocent users. Therefore, several sensitive configuration +# directives are immutable, and some potentially-dangerous commands are blocked. +# +# Configuration directives that control files that Redis writes to (e.g., 'dir' +# and 'dbfilename') and that aren't usually modified during runtime +# are protected by making them immutable. +# +# Commands that can increase the attack surface of Redis and that aren't usually +# called by users are blocked by default. +# +# These can be exposed to either all connections or just local ones by setting +# each of the configs listed below to either of these values: +# +# no - Block for any connection (remain immutable) +# yes - Allow for any connection (no protection) +# local - Allow only for local connections. Ones originating from the +# IPv4 address (127.0.0.1), IPv6 address (::1) or Unix domain sockets. +# +# enable-protected-configs no +# enable-debug-command no +# enable-module-command no + # Accept connections on the specified port, default is 6379 (IANA #815344). # If port 0 is specified Redis will not listen on a TCP socket. port 0 # TCP listen() backlog. # -# In high requests-per-second environments you need an high backlog in order -# to avoid slow clients connections issues. Note that the Linux kernel +# In high requests-per-second environments you need a high backlog in order +# to avoid slow clients connection issues. Note that the Linux kernel # will silently truncate it to the value of /proc/sys/net/core/somaxconn so # make sure to raise both the value of somaxconn and tcp_max_syn_backlog # in order to get the desired effect. @@ -118,8 +164,8 @@ timeout 0 # of communication. This is useful for two reasons: # # 1) Detect dead peers. -# 2) Take the connection alive from the point of view of network -# equipment in the middle. +# 2) Force network equipment in the middle to consider the connection to be +# alive. # # On Linux, the specified value (in seconds) is the period used to send ACKs. # Note that to close the connection the double of the time is needed. @@ -129,22 +175,156 @@ timeout 0 # Redis default starting with Redis 3.2.1. tcp-keepalive 300 +# Apply OS-specific mechanism to mark the listening socket with the specified +# ID, to support advanced routing and filtering capabilities. +# +# On Linux, the ID represents a connection mark. +# On FreeBSD, the ID represents a socket cookie ID. +# On OpenBSD, the ID represents a route table ID. +# +# The default value is 0, which implies no marking is required. +# socket-mark-id 0 + +################################# TLS/SSL ##################################### + +# By default, TLS/SSL is disabled. To enable it, the "tls-port" configuration +# directive can be used to define TLS-listening ports. To enable TLS on the +# default port, use: +# +# port 0 +# tls-port 6379 + +# Configure a X.509 certificate and private key to use for authenticating the +# server to connected clients, masters or cluster peers. These files should be +# PEM formatted. +# +# tls-cert-file redis.crt +# tls-key-file redis.key +# +# If the key file is encrypted using a passphrase, it can be included here +# as well. +# +# tls-key-file-pass secret + +# Normally Redis uses the same certificate for both server functions (accepting +# connections) and client functions (replicating from a master, establishing +# cluster bus connections, etc.). +# +# Sometimes certificates are issued with attributes that designate them as +# client-only or server-only certificates. In that case it may be desired to use +# different certificates for incoming (server) and outgoing (client) +# connections. To do that, use the following directives: +# +# tls-client-cert-file client.crt +# tls-client-key-file client.key +# +# If the key file is encrypted using a passphrase, it can be included here +# as well. +# +# tls-client-key-file-pass secret + +# Configure a DH parameters file to enable Diffie-Hellman (DH) key exchange, +# required by older versions of OpenSSL (<3.0). Newer versions do not require +# this configuration and recommend against it. +# +# tls-dh-params-file redis.dh + +# Configure a CA certificate(s) bundle or directory to authenticate TLS/SSL +# clients and peers. Redis requires an explicit configuration of at least one +# of these, and will not implicitly use the system wide configuration. +# +# tls-ca-cert-file ca.crt +# tls-ca-cert-dir /etc/ssl/certs + +# By default, clients (including replica servers) on a TLS port are required +# to authenticate using valid client side certificates. +# +# If "no" is specified, client certificates are not required and not accepted. +# If "optional" is specified, client certificates are accepted and must be +# valid if provided, but are not required. +# +# tls-auth-clients no +# tls-auth-clients optional + +# By default, a Redis replica does not attempt to establish a TLS connection +# with its master. +# +# Use the following directive to enable TLS on replication links. +# +# tls-replication yes + +# By default, the Redis Cluster bus uses a plain TCP connection. To enable +# TLS for the bus protocol, use the following directive: +# +# tls-cluster yes + +# By default, only TLSv1.2 and TLSv1.3 are enabled and it is highly recommended +# that older formally deprecated versions are kept disabled to reduce the attack surface. +# You can explicitly specify TLS versions to support. +# Allowed values are case insensitive and include "TLSv1", "TLSv1.1", "TLSv1.2", +# "TLSv1.3" (OpenSSL >= 1.1.1) or any combination. +# To enable only TLSv1.2 and TLSv1.3, use: +# +# tls-protocols "TLSv1.2 TLSv1.3" + +# Configure allowed ciphers. See the ciphers(1ssl) manpage for more information +# about the syntax of this string. +# +# Note: this configuration applies only to <= TLSv1.2. +# +# tls-ciphers DEFAULT:!MEDIUM + +# Configure allowed TLSv1.3 ciphersuites. See the ciphers(1ssl) manpage for more +# information about the syntax of this string, and specifically for TLSv1.3 +# ciphersuites. +# +# tls-ciphersuites TLS_CHACHA20_POLY1305_SHA256 + +# When choosing a cipher, use the server's preference instead of the client +# preference. By default, the server follows the client's preference. +# +# tls-prefer-server-ciphers yes + +# By default, TLS session caching is enabled to allow faster and less expensive +# reconnections by clients that support it. Use the following directive to disable +# caching. +# +# tls-session-caching no + +# Change the default number of TLS sessions cached. A zero value sets the cache +# to unlimited size. The default size is 20480. +# +# tls-session-cache-size 5000 + +# Change the default timeout of cached TLS sessions. The default timeout is 300 +# seconds. +# +# tls-session-cache-timeout 60 + ################################# GENERAL ##################################### # By default Redis does not run as a daemon. Use 'yes' if you need it. # Note that Redis will write a pid file in /var/run/redis.pid when daemonized. +# When Redis is supervised by upstart or systemd, this parameter has no impact. daemonize yes # If you run Redis from upstart or systemd, Redis can interact with your # supervision tree. Options: # supervised no - no supervision interaction # supervised upstart - signal upstart by putting Redis into SIGSTOP mode +# requires "expect stop" in your upstart job config # supervised systemd - signal systemd by writing READY=1 to $NOTIFY_SOCKET +# on startup, and updating Redis status on a regular +# basis. # supervised auto - detect upstart or systemd method based on # UPSTART_JOB or NOTIFY_SOCKET environment variables # Note: these supervision methods only signal "process is ready." -# They do not enable continuous liveness pings back to your supervisor. -supervised no +# They do not enable continuous pings back to your supervisor. +# +# The default is "no". To run under upstart/systemd, you can simply uncomment +# the line below: +# +# supervised auto # If a pid file is specified, Redis writes it where specified at startup # and removes it at exit. @@ -155,6 +335,9 @@ supervised no # # Creating a pid file is best effort: if Redis is not able to create it # nothing bad happens, the server will start and run normally. +# +# Note that on modern Linux systems "/run/redis.pid" is more conforming +# and should be used instead. pidfile cache.pid # Specify the server verbosity level. @@ -168,7 +351,7 @@ loglevel notice # Specify the log file name. Also the empty string can be used to force # Redis to log on the standard output. Note that if you use standard # output for logging but daemonize, logs will be sent to /dev/null -# logfile "cache.log" +logfile "" # To enable logging to the system logger, just set 'syslog-enabled' to yes, # and optionally update the other syslog parameters to suit your needs. @@ -180,41 +363,73 @@ loglevel notice # Specify the syslog facility. Must be USER or between LOCAL0-LOCAL7. # syslog-facility local0 +# To disable the built in crash log, which will possibly produce cleaner core +# dumps when they are needed, uncomment the following: +# +# crash-log-enabled no + +# To disable the fast memory check that's run as part of the crash log, which +# will possibly let redis terminate sooner, uncomment the following: +# +# crash-memcheck-enabled no + # Set the number of databases. The default database is DB 0, you can select # a different one on a per-connection basis using SELECT where # dbid is a number between 0 and 'databases'-1 databases 16 # By default Redis shows an ASCII art logo only when started to log to the -# standard output and if the standard output is a TTY. Basically this means -# that normally a logo is displayed only in interactive sessions. +# standard output and if the standard output is a TTY and syslog logging is +# disabled. Basically this means that normally a logo is displayed only in +# interactive sessions. # # However it is possible to force the pre-4.0 behavior and always show a # ASCII art logo in startup logs by setting the following option to yes. -always-show-logo yes +always-show-logo no + +# By default, Redis modifies the process title (as seen in 'top' and 'ps') to +# provide some runtime information. It is possible to disable this and leave +# the process name as executed by setting the following to no. +set-proc-title yes + +# When changing the process title, Redis uses the following template to construct +# the modified title. +# +# Template variables are specified in curly brackets. The following variables are +# supported: +# +# {title} Name of process as executed if parent, or type of child process. +# {listen-addr} Bind address or '*' followed by TCP or TLS port listening on, or +# Unix socket if only that's available. +# {server-mode} Special mode, i.e. "[sentinel]" or "[cluster]". +# {port} TCP port listening on, or 0. +# {tls-port} TLS port listening on, or 0. +# {unixsocket} Unix domain socket listening on, or "". +# {config-file} Name of configuration file used. +# +proc-title-template "{title} {listen-addr} {server-mode}" ################################ SNAPSHOTTING ################################ -# -# Save the DB on disk: -# -# save -# -# Will save the DB if both the given number of seconds and the given -# number of write operations against the DB occurred. -# -# In the example below the behaviour will be to save: -# after 900 sec (15 min) if at least 1 key changed -# after 300 sec (5 min) if at least 10 keys changed -# after 60 sec if at least 10000 keys changed -# -# Note: you can disable saving completely by commenting out all "save" lines. -# -# It is also possible to remove all the previously configured save -# points by adding a save directive with a single empty string argument -# like in the following example: -# -# save "" +# Save the DB to disk. +# +# save [ ...] +# +# Redis will save the DB if the given number of seconds elapsed and it +# surpassed the given number of write operations against the DB. +# +# Snapshotting can be completely disabled with a single empty string argument +# as in following example: +# +# save "" +# +# Unless specified otherwise, by default Redis will save the DB: +# * After 3600 seconds (an hour) if at least 1 change was performed +# * After 300 seconds (5 minutes) if at least 100 changes were performed +# * After 60 seconds if at least 10000 changes were performed +# +# You can set these explicitly by uncommenting the following line. +# save 3600 1 # By default Redis will stop accepting writes if RDB snapshots are enabled @@ -233,7 +448,7 @@ save 3600 1 stop-writes-on-bgsave-error yes # Compress string objects using LZF when dump .rdb databases? -# For default that's set to 'yes' as it's almost always a win. +# By default compression is enabled as it's almost always a win. # If you want to save some CPU in the saving child set it to 'no' but # the dataset will likely be bigger if you have compressible values or keys. rdbcompression yes @@ -247,9 +462,37 @@ rdbcompression yes # tell the loading code to skip the check. rdbchecksum yes +# Enables or disables full sanitization checks for ziplist and listpack etc when +# loading an RDB or RESTORE payload. This reduces the chances of a assertion or +# crash later on while processing commands. +# Options: +# no - Never perform full sanitization +# yes - Always perform full sanitization +# clients - Perform full sanitization only for user connections. +# Excludes: RDB files, RESTORE commands received from the master +# connection, and client connections which have the +# skip-sanitize-payload ACL flag. +# The default should be 'clients' but since it currently affects cluster +# resharding via MIGRATE, it is temporarily set to 'no' by default. +# +# sanitize-dump-payload no + # The filename where to dump the DB dbfilename dump.rdb +# Remove RDB files used by replication in instances without persistence +# enabled. By default this option is disabled, however there are environments +# where for regulations or other security concerns, RDB files persisted on +# disk by masters in order to feed replicas, or stored on disk by replicas +# in order to load them for the initial synchronization, should be deleted +# ASAP. Note that this option ONLY WORKS in instances that have both AOF +# and RDB persistence disabled, otherwise is completely ignored. +# +# An alternative (and sometimes better) way to obtain the same effect is +# to use diskless replication on both master and replicas instances. However +# in the case of replicas, diskless is not always an option. +rdb-del-sync-files no + # The working directory. # # The DB will be written inside this directory, with the filename specified @@ -289,6 +532,17 @@ dir ./ # refuse the replica request. # # masterauth +# +# However this is not enough if you are using Redis ACLs (for Redis version +# 6 or greater), and the default user is not capable of running the PSYNC +# command and/or other commands needed for replication. In this case it's +# better to configure a special user to use with replication, and specify the +# masteruser configuration as such: +# +# masteruser +# +# When masteruser is specified, the replica will authenticate against its +# master using the new AUTH form: AUTH . # When a replica loses its connection with the master, or when the replication # is still in progress, the replica can act in two different ways: @@ -297,11 +551,12 @@ dir ./ # still reply to client requests, possibly with out of date data, or the # data set may just be empty if this is the first synchronization. # -# 2) if replica-serve-stale-data is set to 'no' the replica will reply with -# an error "SYNC with master in progress" to all the kind of commands -# but to INFO, replicaOF, AUTH, PING, SHUTDOWN, REPLCONF, ROLE, CONFIG, -# SUBSCRIBE, UNSUBSCRIBE, PSUBSCRIBE, PUNSUBSCRIBE, PUBLISH, PUBSUB, -# COMMAND, POST, HOST: and LATENCY. +# 2) If replica-serve-stale-data is set to 'no' the replica will reply with error +# "MASTERDOWN Link with MASTER is down and replica-serve-stale-data is set to 'no'" +# to all data access commands, excluding commands such as: +# INFO, REPLICAOF, AUTH, SHUTDOWN, REPLCONF, ROLE, CONFIG, SUBSCRIBE, +# UNSUBSCRIBE, PSUBSCRIBE, PUNSUBSCRIBE, PUBLISH, PUBSUB, COMMAND, POST, +# HOST and LATENCY. # replica-serve-stale-data yes @@ -323,13 +578,11 @@ replica-read-only yes # Replication SYNC strategy: disk or socket. # -# ------------------------------------------------------- -# WARNING: DISKLESS REPLICATION IS EXPERIMENTAL CURRENTLY -# ------------------------------------------------------- +# New replicas and reconnecting replicas that are not able to continue the +# replication process just receiving differences, need to do what is called a +# "full synchronization". An RDB file is transmitted from the master to the +# replicas. # -# New replicas and reconnecting replicas that are not able to continue the replication -# process just receiving differences, need to do what is called a "full -# synchronization". An RDB file is transmitted from the master to the replicas. # The transmission can happen in two different ways: # # 1) Disk-backed: The Redis master creates a new process that writes the RDB @@ -339,34 +592,70 @@ replica-read-only yes # RDB file to replica sockets, without touching the disk at all. # # With disk-backed replication, while the RDB file is generated, more replicas -# can be queued and served with the RDB file as soon as the current child producing -# the RDB file finishes its work. With diskless replication instead once -# the transfer starts, new replicas arriving will be queued and a new transfer -# will start when the current one terminates. +# can be queued and served with the RDB file as soon as the current child +# producing the RDB file finishes its work. With diskless replication instead +# once the transfer starts, new replicas arriving will be queued and a new +# transfer will start when the current one terminates. # # When diskless replication is used, the master waits a configurable amount of -# time (in seconds) before starting the transfer in the hope that multiple replicas -# will arrive and the transfer can be parallelized. +# time (in seconds) before starting the transfer in the hope that multiple +# replicas will arrive and the transfer can be parallelized. # # With slow disks and fast (large bandwidth) networks, diskless replication # works better. -repl-diskless-sync no +repl-diskless-sync yes # When diskless replication is enabled, it is possible to configure the delay # the server waits in order to spawn the child that transfers the RDB via socket # to the replicas. # # This is important since once the transfer starts, it is not possible to serve -# new replicas arriving, that will be queued for the next RDB transfer, so the server -# waits a delay in order to let more replicas arrive. +# new replicas arriving, that will be queued for the next RDB transfer, so the +# server waits a delay in order to let more replicas arrive. # # The delay is specified in seconds, and by default is 5 seconds. To disable # it entirely just set it to 0 seconds and the transfer will start ASAP. repl-diskless-sync-delay 5 -# Replicas send PINGs to server in a predefined interval. It's possible to change -# this interval with the repl_ping_replica_period option. The default value is 10 -# seconds. +# When diskless replication is enabled with a delay, it is possible to let +# the replication start before the maximum delay is reached if the maximum +# number of replicas expected have connected. Default of 0 means that the +# maximum is not defined and Redis will wait the full delay. +repl-diskless-sync-max-replicas 0 + +# ----------------------------------------------------------------------------- +# WARNING: RDB diskless load is experimental. Since in this setup the replica +# does not immediately store an RDB on disk, it may cause data loss during +# failovers. RDB diskless load + Redis modules not handling I/O reads may also +# cause Redis to abort in case of I/O errors during the initial synchronization +# stage with the master. Use only if you know what you are doing. +# ----------------------------------------------------------------------------- +# +# Replica can load the RDB it reads from the replication link directly from the +# socket, or store the RDB to a file and read that file after it was completely +# received from the master. +# +# In many cases the disk is slower than the network, and storing and loading +# the RDB file may increase replication time (and even increase the master's +# Copy on Write memory and replica buffers). +# However, parsing the RDB file directly from the socket may mean that we have +# to flush the contents of the current database before the full rdb was +# received. For this reason we have the following options: +# +# "disabled" - Don't use diskless load (store the rdb file to the disk first) +# "on-empty-db" - Use diskless load only when it is completely safe. +# "swapdb" - Keep current db contents in RAM while parsing the data directly +# from the socket. Replicas in this mode can keep serving current +# data set while replication is in progress, except for cases where +# they can't recognize master as having a data set from same +# replication history. +# Note that this requires sufficient memory, if you don't have it, +# you risk an OOM kill. +repl-diskless-load disabled + +# Master send PINGs to its replicas in a predefined interval. It's possible to +# change this interval with the repl_ping_replica_period option. The default +# value is 10 seconds. # # repl-ping-replica-period 10 @@ -378,7 +667,8 @@ repl-diskless-sync-delay 5 # # It is important to make sure that this value is greater than the value # specified for repl-ping-replica-period otherwise a timeout will be detected -# every time there is low traffic between the master and the replica. +# every time there is low traffic between the master and the replica. The default +# value is 60 seconds. # # repl-timeout 60 @@ -398,38 +688,38 @@ repl-diskless-sync-delay 5 repl-disable-tcp-nodelay no # Set the replication backlog size. The backlog is a buffer that accumulates -# replica data when replicas are disconnected for some time, so that when a replica -# wants to reconnect again, often a full resync is not needed, but a partial -# resync is enough, just passing the portion of data the replica missed while -# disconnected. +# replica data when replicas are disconnected for some time, so that when a +# replica wants to reconnect again, often a full resync is not needed, but a +# partial resync is enough, just passing the portion of data the replica +# missed while disconnected. # -# The bigger the replication backlog, the longer the time the replica can be -# disconnected and later be able to perform a partial resynchronization. +# The bigger the replication backlog, the longer the replica can endure the +# disconnect and later be able to perform a partial resynchronization. # -# The backlog is only allocated once there is at least a replica connected. +# The backlog is only allocated if there is at least one replica connected. # # repl-backlog-size 1mb -# After a master has no longer connected replicas for some time, the backlog -# will be freed. The following option configures the amount of seconds that -# need to elapse, starting from the time the last replica disconnected, for -# the backlog buffer to be freed. +# After a master has no connected replicas for some time, the backlog will be +# freed. The following option configures the amount of seconds that need to +# elapse, starting from the time the last replica disconnected, for the backlog +# buffer to be freed. # # Note that replicas never free the backlog for timeout, since they may be # promoted to masters later, and should be able to correctly "partially -# resynchronize" with the replicas: hence they should always accumulate backlog. +# resynchronize" with other replicas: hence they should always accumulate backlog. # # A value of 0 means to never release the backlog. # # repl-backlog-ttl 3600 -# The replica priority is an integer number published by Redis in the INFO output. -# It is used by Redis Sentinel in order to select a replica to promote into a -# master if the master is no longer working correctly. +# The replica priority is an integer number published by Redis in the INFO +# output. It is used by Redis Sentinel in order to select a replica to promote +# into a master if the master is no longer working correctly. # # A replica with a low priority number is considered better for promotion, so -# for instance if there are three replicas with priority 10, 100, 25 Sentinel will -# pick the one with priority 10, that is the lowest. +# for instance if there are three replicas with priority 10, 100, 25 Sentinel +# will pick the one with priority 10, that is the lowest. # # However a special priority of 0 marks the replica as not able to perform the # role of master, so a replica with priority of 0 will never be selected by @@ -438,6 +728,43 @@ repl-disable-tcp-nodelay no # By default the priority is 100. replica-priority 100 +# The propagation error behavior controls how Redis will behave when it is +# unable to handle a command being processed in the replication stream from a master +# or processed while reading from an AOF file. Errors that occur during propagation +# are unexpected, and can cause data inconsistency. However, there are edge cases +# in earlier versions of Redis where it was possible for the server to replicate or persist +# commands that would fail on future versions. For this reason the default behavior +# is to ignore such errors and continue processing commands. +# +# If an application wants to ensure there is no data divergence, this configuration +# should be set to 'panic' instead. The value can also be set to 'panic-on-replicas' +# to only panic when a replica encounters an error on the replication stream. One of +# these two panic values will become the default value in the future once there are +# sufficient safety mechanisms in place to prevent false positive crashes. +# +# propagation-error-behavior ignore + +# Replica ignore disk write errors controls the behavior of a replica when it is +# unable to persist a write command received from its master to disk. By default, +# this configuration is set to 'no' and will crash the replica in this condition. +# It is not recommended to change this default, however in order to be compatible +# with older versions of Redis this config can be toggled to 'yes' which will just +# log a warning and execute the write command it got from the master. +# +# replica-ignore-disk-write-errors no + +# ----------------------------------------------------------------------------- +# By default, Redis Sentinel includes all replicas in its reports. A replica +# can be excluded from Redis Sentinel's announcements. An unannounced replica +# will be ignored by the 'sentinel replicas ' command and won't be +# exposed to Redis Sentinel's clients. +# +# This option does not change the behavior of replica-priority. Even with +# replica-announced set to 'no', the replica can be promoted to master. To +# prevent this behavior, set replica-priority to 0. +# +# replica-announced yes + # It is possible for a master to stop accepting writes if there are less than # N replicas connected, having a lag less or equal than M seconds. # @@ -467,8 +794,8 @@ replica-priority 100 # Another place where this info is available is in the output of the # "ROLE" command of a master. # -# The listed IP and address normally reported by a replica is obtained -# in the following way: +# The listed IP address and port normally reported by a replica is +# obtained in the following way: # # IP: The address is auto detected by checking the peer address # of the socket used by the replica to connect with the master. @@ -478,7 +805,7 @@ replica-priority 100 # listen for connections. # # However when port forwarding or Network Address Translation (NAT) is -# used, the replica may be actually reachable via different IP and port +# used, the replica may actually be reachable via different IP and port # pairs. The following two options can be used by a replica in order to # report to its master a specific set of IP and port, so that both INFO # and ROLE will report those values. @@ -489,22 +816,245 @@ replica-priority 100 # replica-announce-ip 5.5.5.5 # replica-announce-port 1234 +############################### KEYS TRACKING ################################# + +# Redis implements server assisted support for client side caching of values. +# This is implemented using an invalidation table that remembers, using +# a radix key indexed by key name, what clients have which keys. In turn +# this is used in order to send invalidation messages to clients. Please +# check this page to understand more about the feature: +# +# https://redis.io/topics/client-side-caching +# +# When tracking is enabled for a client, all the read only queries are assumed +# to be cached: this will force Redis to store information in the invalidation +# table. When keys are modified, such information is flushed away, and +# invalidation messages are sent to the clients. However if the workload is +# heavily dominated by reads, Redis could use more and more memory in order +# to track the keys fetched by many clients. +# +# For this reason it is possible to configure a maximum fill value for the +# invalidation table. By default it is set to 1M of keys, and once this limit +# is reached, Redis will start to evict keys in the invalidation table +# even if they were not modified, just to reclaim memory: this will in turn +# force the clients to invalidate the cached values. Basically the table +# maximum size is a trade off between the memory you want to spend server +# side to track information about who cached what, and the ability of clients +# to retain cached objects in memory. +# +# If you set the value to 0, it means there are no limits, and Redis will +# retain as many keys as needed in the invalidation table. +# In the "stats" INFO section, you can find information about the number of +# keys in the invalidation table at every given moment. +# +# Note: when key tracking is used in broadcasting mode, no memory is used +# in the server side so this setting is useless. +# +# tracking-table-max-keys 1000000 + ################################## SECURITY ################################### -# Require clients to issue AUTH before processing any other -# commands. This might be useful in environments in which you do not trust -# others with access to the host running redis-server. +# Warning: since Redis is pretty fast, an outside user can try up to +# 1 million passwords per second against a modern box. This means that you +# should use very strong passwords, otherwise they will be very easy to break. +# Note that because the password is really a shared secret between the client +# and the server, and should not be memorized by any human, the password +# can be easily a long string from /dev/urandom or whatever, so by using a +# long and unguessable password no brute force attack will be possible. + +# Redis ACL users are defined in the following format: # -# This should stay commented out for backward compatibility and because most -# people do not need auth (e.g. they run their own servers). +# user ... acl rules ... # -# Warning: since Redis is pretty fast an outside user can try up to -# 150k passwords per second against a good box. This means that you should -# use a very strong password otherwise it will be very easy to break. +# For example: +# +# user worker +@list +@connection ~jobs:* on >ffa9203c493aa99 +# +# The special username "default" is used for new connections. If this user +# has the "nopass" rule, then new connections will be immediately authenticated +# as the "default" user without the need of any password provided via the +# AUTH command. Otherwise if the "default" user is not flagged with "nopass" +# the connections will start in not authenticated state, and will require +# AUTH (or the HELLO command AUTH option) in order to be authenticated and +# start to work. +# +# The ACL rules that describe what a user can do are the following: +# +# on Enable the user: it is possible to authenticate as this user. +# off Disable the user: it's no longer possible to authenticate +# with this user, however the already authenticated connections +# will still work. +# skip-sanitize-payload RESTORE dump-payload sanitization is skipped. +# sanitize-payload RESTORE dump-payload is sanitized (default). +# + Allow the execution of that command. +# May be used with `|` for allowing subcommands (e.g "+config|get") +# - Disallow the execution of that command. +# May be used with `|` for blocking subcommands (e.g "-config|set") +# +@ Allow the execution of all the commands in such category +# with valid categories are like @admin, @set, @sortedset, ... +# and so forth, see the full list in the server.c file where +# the Redis command table is described and defined. +# The special category @all means all the commands, but currently +# present in the server, and that will be loaded in the future +# via modules. +# +|first-arg Allow a specific first argument of an otherwise +# disabled command. It is only supported on commands with +# no sub-commands, and is not allowed as negative form +# like -SELECT|1, only additive starting with "+". This +# feature is deprecated and may be removed in the future. +# allcommands Alias for +@all. Note that it implies the ability to execute +# all the future commands loaded via the modules system. +# nocommands Alias for -@all. +# ~ Add a pattern of keys that can be mentioned as part of +# commands. For instance ~* allows all the keys. The pattern +# is a glob-style pattern like the one of KEYS. +# It is possible to specify multiple patterns. +# %R~ Add key read pattern that specifies which keys can be read +# from. +# %W~ Add key write pattern that specifies which keys can be +# written to. +# allkeys Alias for ~* +# resetkeys Flush the list of allowed keys patterns. +# & Add a glob-style pattern of Pub/Sub channels that can be +# accessed by the user. It is possible to specify multiple channel +# patterns. +# allchannels Alias for &* +# resetchannels Flush the list of allowed channel patterns. +# > Add this password to the list of valid password for the user. +# For example >mypass will add "mypass" to the list. +# This directive clears the "nopass" flag (see later). +# < Remove this password from the list of valid passwords. +# nopass All the set passwords of the user are removed, and the user +# is flagged as requiring no password: it means that every +# password will work against this user. If this directive is +# used for the default user, every new connection will be +# immediately authenticated with the default user without +# any explicit AUTH command required. Note that the "resetpass" +# directive will clear this condition. +# resetpass Flush the list of allowed passwords. Moreover removes the +# "nopass" status. After "resetpass" the user has no associated +# passwords and there is no way to authenticate without adding +# some password (or setting it as "nopass" later). +# reset Performs the following actions: resetpass, resetkeys, off, +# -@all. The user returns to the same state it has immediately +# after its creation. +# () Create a new selector with the options specified within the +# parentheses and attach it to the user. Each option should be +# space separated. The first character must be ( and the last +# character must be ). +# clearselectors Remove all of the currently attached selectors. +# Note this does not change the "root" user permissions, +# which are the permissions directly applied onto the +# user (outside the parentheses). +# +# ACL rules can be specified in any order: for instance you can start with +# passwords, then flags, or key patterns. However note that the additive +# and subtractive rules will CHANGE MEANING depending on the ordering. +# For instance see the following example: +# +# user alice on +@all -DEBUG ~* >somepassword +# +# This will allow "alice" to use all the commands with the exception of the +# DEBUG command, since +@all added all the commands to the set of the commands +# alice can use, and later DEBUG was removed. However if we invert the order +# of two ACL rules the result will be different: +# +# user alice on -DEBUG +@all ~* >somepassword +# +# Now DEBUG was removed when alice had yet no commands in the set of allowed +# commands, later all the commands are added, so the user will be able to +# execute everything. +# +# Basically ACL rules are processed left-to-right. +# +# The following is a list of command categories and their meanings: +# * keyspace - Writing or reading from keys, databases, or their metadata +# in a type agnostic way. Includes DEL, RESTORE, DUMP, RENAME, EXISTS, DBSIZE, +# KEYS, EXPIRE, TTL, FLUSHALL, etc. Commands that may modify the keyspace, +# key or metadata will also have `write` category. Commands that only read +# the keyspace, key or metadata will have the `read` category. +# * read - Reading from keys (values or metadata). Note that commands that don't +# interact with keys, will not have either `read` or `write`. +# * write - Writing to keys (values or metadata) +# * admin - Administrative commands. Normal applications will never need to use +# these. Includes REPLICAOF, CONFIG, DEBUG, SAVE, MONITOR, ACL, SHUTDOWN, etc. +# * dangerous - Potentially dangerous (each should be considered with care for +# various reasons). This includes FLUSHALL, MIGRATE, RESTORE, SORT, KEYS, +# CLIENT, DEBUG, INFO, CONFIG, SAVE, REPLICAOF, etc. +# * connection - Commands affecting the connection or other connections. +# This includes AUTH, SELECT, COMMAND, CLIENT, ECHO, PING, etc. +# * blocking - Potentially blocking the connection until released by another +# command. +# * fast - Fast O(1) commands. May loop on the number of arguments, but not the +# number of elements in the key. +# * slow - All commands that are not Fast. +# * pubsub - PUBLISH / SUBSCRIBE related +# * transaction - WATCH / MULTI / EXEC related commands. +# * scripting - Scripting related. +# * set - Data type: sets related. +# * sortedset - Data type: zsets related. +# * list - Data type: lists related. +# * hash - Data type: hashes related. +# * string - Data type: strings related. +# * bitmap - Data type: bitmaps related. +# * hyperloglog - Data type: hyperloglog related. +# * geo - Data type: geo related. +# * stream - Data type: streams related. +# +# For more information about ACL configuration please refer to +# the Redis web site at https://redis.io/topics/acl + +# ACL LOG +# +# The ACL Log tracks failed commands and authentication events associated +# with ACLs. The ACL Log is useful to troubleshoot failed commands blocked +# by ACLs. The ACL Log is stored in memory. You can reclaim memory with +# ACL LOG RESET. Define the maximum entry length of the ACL Log below. +acllog-max-len 128 + +# Using an external ACL file +# +# Instead of configuring users here in this file, it is possible to use +# a stand-alone file just listing users. The two methods cannot be mixed: +# if you configure users here and at the same time you activate the external +# ACL file, the server will refuse to start. +# +# The format of the external ACL user file is exactly the same as the +# format that is used inside redis.conf to describe users. +# +# aclfile /etc/redis/users.acl + +# IMPORTANT NOTE: starting with Redis 6 "requirepass" is just a compatibility +# layer on top of the new ACL system. The option effect will be just setting +# the password for the default user. Clients will still authenticate using +# AUTH as usually, or more explicitly with AUTH default +# if they follow the new protocol: both will work. +# +# The requirepass is not compatible with aclfile option and the ACL LOAD +# command, these will cause requirepass to be ignored. # # requirepass foobared -# Command renaming. +# New users are initialized with restrictive permissions by default, via the +# equivalent of this ACL rule 'off resetkeys -@all'. Starting with Redis 6.2, it +# is possible to manage access to Pub/Sub channels with ACL rules as well. The +# default Pub/Sub channels permission if new users is controlled by the +# acl-pubsub-default configuration directive, which accepts one of these values: +# +# allchannels: grants access to all Pub/Sub channels +# resetchannels: revokes access to all Pub/Sub channels +# +# From Redis 7.0, acl-pubsub-default defaults to 'resetchannels' permission. +# +# acl-pubsub-default resetchannels + +# Command renaming (DEPRECATED). +# +# ------------------------------------------------------------------------ +# WARNING: avoid using this option if possible. Instead use ACLs to remove +# commands from the default user, and put them only in some admin user you +# create for administrative purposes. +# ------------------------------------------------------------------------ # # It is possible to change the name of dangerous commands in a shared # environment. For instance the CONFIG command may be renamed into something @@ -534,6 +1084,11 @@ replica-priority 100 # Once the limit is reached Redis will close all the new connections sending # an error 'max number of clients reached'. # +# IMPORTANT: When Redis Cluster is used, the max number of connections is also +# shared with the cluster bus: every node in the cluster will use two +# connections, one incoming and another outgoing. It is important to size the +# limit accordingly in case of very large clusters. +# # maxclients 10000 ############################## MEMORY MANAGEMENT ################################ @@ -564,13 +1119,13 @@ replica-priority 100 # maxmemory # MAXMEMORY POLICY: how Redis will select what to remove when maxmemory -# is reached. You can select among five behaviors: +# is reached. You can select one from the following behaviors: # -# volatile-lru -> Evict using approximated LRU among the keys with an expire set. +# volatile-lru -> Evict using approximated LRU, only keys with an expire set. # allkeys-lru -> Evict any key using approximated LRU. -# volatile-lfu -> Evict using approximated LFU among the keys with an expire set. +# volatile-lfu -> Evict using approximated LFU, only keys with an expire set. # allkeys-lfu -> Evict any key using approximated LFU. -# volatile-random -> Remove a random key among the ones with an expire set. +# volatile-random -> Remove a random key having an expire set. # allkeys-random -> Remove a random key, any key. # volatile-ttl -> Remove the key with the nearest expire time (minor TTL) # noeviction -> Don't evict anything, just return an error on write operations. @@ -581,14 +1136,12 @@ replica-priority 100 # Both LRU, LFU and volatile-ttl are implemented using approximated # randomized algorithms. # -# Note: with any of the above policies, Redis will return an error on write -# operations, when there are no suitable keys for eviction. -# -# At the date of writing these commands are: set setnx setex append -# incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd -# sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby -# zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby -# getset mset msetnx exec sort +# Note: with any of the above policies, when there are no suitable keys for +# eviction, Redis will return an error on write operations that require +# more memory. These are usually commands that create new keys, add data or +# modify existing keys. A few examples are: SET, INCR, HSET, LPUSH, SUNIONSTORE, +# SORT (due to the STORE argument), and EXEC (if the transaction includes any +# command that requires memory). # # The default is: # @@ -596,8 +1149,8 @@ replica-priority 100 # LRU, LFU and minimal TTL algorithms are not precise algorithms but approximated # algorithms (in order to save memory), so you can tune it for speed or -# accuracy. For default Redis will check five keys and pick the one that was -# used less recently, you can change the sample size using the following +# accuracy. By default Redis will check five keys and pick the one that was +# used least recently, you can change the sample size using the following # configuration directive. # # The default of 5 produces good enough results. 10 Approximates very closely @@ -605,26 +1158,51 @@ replica-priority 100 # # maxmemory-samples 5 +# Eviction processing is designed to function well with the default setting. +# If there is an unusually large amount of write traffic, this value may need to +# be increased. Decreasing this value may reduce latency at the risk of +# eviction processing effectiveness +# 0 = minimum latency, 10 = default, 100 = process without regard to latency +# +# maxmemory-eviction-tenacity 10 + # Starting from Redis 5, by default a replica will ignore its maxmemory setting # (unless it is promoted to master after a failover or manually). It means # that the eviction of keys will be just handled by the master, sending the # DEL commands to the replica as keys evict in the master side. # # This behavior ensures that masters and replicas stay consistent, and is usually -# what you want, however if your replica is writable, or you want the replica to have -# a different memory setting, and you are sure all the writes performed to the -# replica are idempotent, then you may change this default (but be sure to understand -# what you are doing). +# what you want, however if your replica is writable, or you want the replica +# to have a different memory setting, and you are sure all the writes performed +# to the replica are idempotent, then you may change this default (but be sure +# to understand what you are doing). # # Note that since the replica by default does not evict, it may end using more # memory than the one set via maxmemory (there are certain buffers that may -# be larger on the replica, or data structures may sometimes take more memory and so -# forth). So make sure you monitor your replicas and make sure they have enough -# memory to never hit a real out-of-memory condition before the master hits -# the configured maxmemory setting. +# be larger on the replica, or data structures may sometimes take more memory +# and so forth). So make sure you monitor your replicas and make sure they +# have enough memory to never hit a real out-of-memory condition before the +# master hits the configured maxmemory setting. # # replica-ignore-maxmemory yes +# Redis reclaims expired keys in two ways: upon access when those keys are +# found to be expired, and also in background, in what is called the +# "active expire key". The key space is slowly and interactively scanned +# looking for expired keys to reclaim, so that it is possible to free memory +# of keys that are expired and will never be accessed again in a short time. +# +# The default effort of the expire cycle will try to avoid having more than +# ten percent of expired keys still in memory, and will try to avoid consuming +# more than 25% of total memory and to add latency to the system. However +# it is possible to increase the expire "effort" that is normally set to +# "1", to a greater value, up to the value "10". At its maximum value the +# system will use more CPU, longer cycles (and technically may introduce +# more latency), and will tolerate less already expired keys still present +# in the system. It's a tradeoff between memory, CPU and latency. +# +# active-expire-effort 1 + ############################# LAZY FREEING #################################### # Redis has two primitives to delete keys. One is called DEL and is a blocking @@ -667,13 +1245,117 @@ replica-priority 100 # In all the above cases the default is to delete objects in a blocking way, # like if DEL was called. However you can configure each case specifically # in order to instead release memory in a non-blocking way like if UNLINK -# was called, using the following configuration directives: +# was called, using the following configuration directives. lazyfree-lazy-eviction no lazyfree-lazy-expire no lazyfree-lazy-server-del no replica-lazy-flush no +# It is also possible, for the case when to replace the user code DEL calls +# with UNLINK calls is not easy, to modify the default behavior of the DEL +# command to act exactly like UNLINK, using the following configuration +# directive: + +lazyfree-lazy-user-del no + +# FLUSHDB, FLUSHALL, SCRIPT FLUSH and FUNCTION FLUSH support both asynchronous and synchronous +# deletion, which can be controlled by passing the [SYNC|ASYNC] flags into the +# commands. When neither flag is passed, this directive will be used to determine +# if the data should be deleted asynchronously. + +lazyfree-lazy-user-flush no + +################################ THREADED I/O ################################# + +# Redis is mostly single threaded, however there are certain threaded +# operations such as UNLINK, slow I/O accesses and other things that are +# performed on side threads. +# +# Now it is also possible to handle Redis clients socket reads and writes +# in different I/O threads. Since especially writing is so slow, normally +# Redis users use pipelining in order to speed up the Redis performances per +# core, and spawn multiple instances in order to scale more. Using I/O +# threads it is possible to easily speedup two times Redis without resorting +# to pipelining nor sharding of the instance. +# +# By default threading is disabled, we suggest enabling it only in machines +# that have at least 4 or more cores, leaving at least one spare core. +# Using more than 8 threads is unlikely to help much. We also recommend using +# threaded I/O only if you actually have performance problems, with Redis +# instances being able to use a quite big percentage of CPU time, otherwise +# there is no point in using this feature. +# +# So for instance if you have a four cores boxes, try to use 2 or 3 I/O +# threads, if you have a 8 cores, try to use 6 threads. In order to +# enable I/O threads use the following configuration directive: +# +# io-threads 4 +# +# Setting io-threads to 1 will just use the main thread as usual. +# When I/O threads are enabled, we only use threads for writes, that is +# to thread the write(2) syscall and transfer the client buffers to the +# socket. However it is also possible to enable threading of reads and +# protocol parsing using the following configuration directive, by setting +# it to yes: +# +# io-threads-do-reads no +# +# Usually threading reads doesn't help much. +# +# NOTE 1: This configuration directive cannot be changed at runtime via +# CONFIG SET. Also, this feature currently does not work when SSL is +# enabled. +# +# NOTE 2: If you want to test the Redis speedup using redis-benchmark, make +# sure you also run the benchmark itself in threaded mode, using the +# --threads option to match the number of Redis threads, otherwise you'll not +# be able to notice the improvements. + +############################ KERNEL OOM CONTROL ############################## + +# On Linux, it is possible to hint the kernel OOM killer on what processes +# should be killed first when out of memory. +# +# Enabling this feature makes Redis actively control the oom_score_adj value +# for all its processes, depending on their role. The default scores will +# attempt to have background child processes killed before all others, and +# replicas killed before masters. +# +# Redis supports these options: +# +# no: Don't make changes to oom-score-adj (default). +# yes: Alias to "relative" see below. +# absolute: Values in oom-score-adj-values are written as is to the kernel. +# relative: Values are used relative to the initial value of oom_score_adj when +# the server starts and are then clamped to a range of -1000 to 1000. +# Because typically the initial value is 0, they will often match the +# absolute values. +oom-score-adj no + +# When oom-score-adj is used, this directive controls the specific values used +# for master, replica and background child processes. Values range -2000 to +# 2000 (higher means more likely to be killed). +# +# Unprivileged processes (not root, and without CAP_SYS_RESOURCE capabilities) +# can freely increase their value, but not decrease it below its initial +# settings. This means that setting oom-score-adj to "relative" and setting the +# oom-score-adj-values to positive values will always succeed. +oom-score-adj-values 0 200 800 + + +#################### KERNEL transparent hugepage CONTROL ###################### + +# Usually the kernel Transparent Huge Pages control is set to "madvise" or +# or "never" by default (/sys/kernel/mm/transparent_hugepage/enabled), in which +# case this config has no effect. On systems in which it is set to "always", +# redis will attempt to disable it specifically for the redis process in order +# to avoid latency problems specifically with fork(2) and CoW. +# If for some reason you prefer to keep it enabled, you can set this config to +# "no" and the kernel global to "always". + +disable-thp yes + ############################## APPEND ONLY MODE ############################### # By default Redis asynchronously dumps the dataset on disk. This mode is @@ -692,14 +1374,43 @@ replica-lazy-flush no # If the AOF is enabled on startup Redis will load the AOF, that is the file # with the better durability guarantees. # -# Please check http://redis.io/topics/persistence for more information. +# Please check https://redis.io/topics/persistence for more information. appendonly no -# The name of the append only file (default: "appendonly.aof") +# The base name of the append only file. +# +# Redis 7 and newer use a set of append-only files to persist the dataset +# and changes applied to it. There are two basic types of files in use: +# +# - Base files, which are a snapshot representing the complete state of the +# dataset at the time the file was created. Base files can be either in +# the form of RDB (binary serialized) or AOF (textual commands). +# - Incremental files, which contain additional commands that were applied +# to the dataset following the previous file. +# +# In addition, manifest files are used to track the files and the order in +# which they were created and should be applied. +# +# Append-only file names are created by Redis following a specific pattern. +# The file name's prefix is based on the 'appendfilename' configuration +# parameter, followed by additional information about the sequence and type. +# +# For example, if appendfilename is set to appendonly.aof, the following file +# names could be derived: +# +# - appendonly.aof.1.base.rdb as a base file. +# - appendonly.aof.1.incr.aof, appendonly.aof.2.incr.aof as incremental files. +# - appendonly.aof.manifest as a manifest file. appendfilename "appendonly.aof" +# For convenience, Redis stores all persistent append-only files in a dedicated +# directory. The name of the directory is determined by the appenddirname +# configuration parameter. + +appenddirname "appendonlydir" + # The fsync() call tells the Operating System to actually write data on disk # instead of waiting for more data in the output buffer. Some OS will really flush # data on disk, some other OS will just try to do it ASAP. @@ -739,7 +1450,7 @@ appendfsync everysec # BGSAVE or BGREWRITEAOF is in progress. # # This means that while another child is saving, the durability of Redis is -# the same as "appendfsync none". In practical terms, this means that it is +# the same as "appendfsync no". In practical terms, this means that it is # possible to lose up to 30 seconds of log in the worst scenario (with the # default Linux settings). # @@ -792,43 +1503,72 @@ auto-aof-rewrite-min-size 64mb # will be found. aof-load-truncated yes -# When rewriting the AOF file, Redis is able to use an RDB preamble in the -# AOF file for faster rewrites and recoveries. When this option is turned -# on the rewritten AOF file is composed of two different stanzas: -# -# [RDB file][AOF tail] -# -# When loading Redis recognizes that the AOF file starts with the "REDIS" -# string and loads the prefixed RDB file, and continues loading the AOF -# tail. +# Redis can create append-only base files in either RDB or AOF formats. Using +# the RDB format is always faster and more efficient, and disabling it is only +# supported for backward compatibility purposes. aof-use-rdb-preamble yes -################################ LUA SCRIPTING ############################### +# Redis supports recording timestamp annotations in the AOF to support restoring +# the data from a specific point-in-time. However, using this capability changes +# the AOF format in a way that may not be compatible with existing AOF parsers. +aof-timestamp-enabled no -# Max execution time of a Lua script in milliseconds. +################################ SHUTDOWN ##################################### + +# Maximum time to wait for replicas when shutting down, in seconds. # -# If the maximum execution time is reached Redis will log that a script is -# still in execution after the maximum allowed time and will start to -# reply to queries with an error. +# During shut down, a grace period allows any lagging replicas to catch up with +# the latest replication offset before the master exists. This period can +# prevent data loss, especially for deployments without configured disk backups. # -# When a long running script exceeds the maximum execution time only the -# SCRIPT KILL and SHUTDOWN NOSAVE commands are available. The first can be -# used to stop a script that did not yet called write commands. The second -# is the only way to shut down the server in the case a write command was -# already issued by the script but the user doesn't want to wait for the natural -# termination of the script. +# The 'shutdown-timeout' value is the grace period's duration in seconds. It is +# only applicable when the instance has replicas. To disable the feature, set +# the value to 0. # -# Set it to 0 or a negative value for unlimited execution without warnings. -lua-time-limit 5000 +# shutdown-timeout 10 + +# When Redis receives a SIGINT or SIGTERM, shutdown is initiated and by default +# an RDB snapshot is written to disk in a blocking operation if save points are configured. +# The options used on signaled shutdown can include the following values: +# default: Saves RDB snapshot only if save points are configured. +# Waits for lagging replicas to catch up. +# save: Forces a DB saving operation even if no save points are configured. +# nosave: Prevents DB saving operation even if one or more save points are configured. +# now: Skips waiting for lagging replicas. +# force: Ignores any errors that would normally prevent the server from exiting. +# +# Any combination of values is allowed as long as "save" and "nosave" are not set simultaneously. +# Example: "nosave force now" +# +# shutdown-on-sigint default +# shutdown-on-sigterm default + +################ NON-DETERMINISTIC LONG BLOCKING COMMANDS ##################### + +# Maximum time in milliseconds for EVAL scripts, functions and in some cases +# modules' commands before Redis can start processing or rejecting other clients. +# +# If the maximum execution time is reached Redis will start to reply to most +# commands with a BUSY error. +# +# In this state Redis will only allow a handful of commands to be executed. +# For instance, SCRIPT KILL, FUNCTION KILL, SHUTDOWN NOSAVE and possibly some +# module specific 'allow-busy' commands. +# +# SCRIPT KILL and FUNCTION KILL will only be able to stop a script that did not +# yet call any write commands, so SHUTDOWN NOSAVE may be the only way to stop +# the server in the case a write command was already issued by the script when +# the user doesn't want to wait for the natural termination of the script. +# +# The default is 5 seconds. It is possible to set it to 0 or a negative value +# to disable this mechanism (uninterrupted execution). Note that in the past +# this config had a different name, which is now an alias, so both of these do +# the same: +# lua-time-limit 5000 +# busy-reply-threshold 5000 ################################ REDIS CLUSTER ############################### -# -# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -# WARNING EXPERIMENTAL: Redis Cluster is considered to be stable code, however -# in order to mark it as "mature" we need to wait for a non trivial percentage -# of users to deploy it in production. -# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -# + # Normal Redis instances can't be part of a Redis Cluster; only nodes that are # started as cluster nodes can. In order to start a Redis instance as a # cluster node enable the cluster support uncommenting the following: @@ -845,10 +1585,15 @@ lua-time-limit 5000 # Cluster node timeout is the amount of milliseconds a node must be unreachable # for it to be considered in failure state. -# Most other internal time limits are multiple of the node timeout. +# Most other internal time limits are a multiple of the node timeout. # # cluster-node-timeout 15000 +# The cluster port is the port that the cluster bus will listen for inbound connections on. When set +# to the default value, 0, it will be bound to the command port + 10000. Setting this value requires +# you to specify the cluster bus port when executing cluster meet. +# cluster-port 0 + # A replica of a failing master will avoid to start a failover if its data # looks too old. # @@ -872,18 +1617,18 @@ lua-time-limit 5000 # the failover if, since the last interaction with the master, the time # elapsed is greater than: # -# (node-timeout * replica-validity-factor) + repl-ping-replica-period +# (node-timeout * cluster-replica-validity-factor) + repl-ping-replica-period # -# So for example if node-timeout is 30 seconds, and the replica-validity-factor +# So for example if node-timeout is 30 seconds, and the cluster-replica-validity-factor # is 10, and assuming a default repl-ping-replica-period of 10 seconds, the # replica will not try to failover if it was not able to talk with the master # for longer than 310 seconds. # -# A large replica-validity-factor may allow replicas with too old data to failover +# A large cluster-replica-validity-factor may allow replicas with too old data to failover # a master, while a too small value may prevent the cluster from being able to # elect a replica at all. # -# For maximum availability, it is possible to set the replica-validity-factor +# For maximum availability, it is possible to set the cluster-replica-validity-factor # to a value of 0, which means, that replicas will always try to failover the # master regardless of the last time they interacted with the master. # (However they'll always try to apply a delay proportional to their @@ -907,14 +1652,23 @@ lua-time-limit 5000 # master in your cluster. # # Default is 1 (replicas migrate only if their masters remain with at least -# one replica). To disable migration just set it to a very large value. +# one replica). To disable migration just set it to a very large value or +# set cluster-allow-replica-migration to 'no'. # A value of 0 can be set but is useful only for debugging and dangerous # in production. # # cluster-migration-barrier 1 +# Turning off this option allows to use less automatic cluster configuration. +# It both disables migration to orphaned masters and migration from masters +# that became empty. +# +# Default is 'yes' (allow automatic migrations). +# +# cluster-allow-replica-migration yes + # By default Redis Cluster nodes stop accepting queries if they detect there -# is at least an hash slot uncovered (no available node is serving it). +# is at least a hash slot uncovered (no available node is serving it). # This way if the cluster is partially down (for example a range of hash slots # are no longer covered) all the cluster becomes, eventually, unavailable. # It automatically returns available as soon as all the slots are covered again. @@ -927,7 +1681,7 @@ lua-time-limit 5000 # cluster-require-full-coverage yes # This option, when set to yes, prevents replicas from trying to failover its -# master during master failures. However the master can still perform a +# master during master failures. However the replica can still perform a # manual failover, if forced to do so. # # This is useful in different scenarios, especially in the case of multiple @@ -936,8 +1690,70 @@ lua-time-limit 5000 # # cluster-replica-no-failover no +# This option, when set to yes, allows nodes to serve read traffic while the +# cluster is in a down state, as long as it believes it owns the slots. +# +# This is useful for two cases. The first case is for when an application +# doesn't require consistency of data during node failures or network partitions. +# One example of this is a cache, where as long as the node has the data it +# should be able to serve it. +# +# The second use case is for configurations that don't meet the recommended +# three shards but want to enable cluster mode and scale later. A +# master outage in a 1 or 2 shard configuration causes a read/write outage to the +# entire cluster without this option set, with it set there is only a write outage. +# Without a quorum of masters, slot ownership will not change automatically. +# +# cluster-allow-reads-when-down no + +# This option, when set to yes, allows nodes to serve pubsub shard traffic while +# the cluster is in a down state, as long as it believes it owns the slots. +# +# This is useful if the application would like to use the pubsub feature even when +# the cluster global stable state is not OK. If the application wants to make sure only +# one shard is serving a given channel, this feature should be kept as yes. +# +# cluster-allow-pubsubshard-when-down yes + +# Cluster link send buffer limit is the limit on the memory usage of an individual +# cluster bus link's send buffer in bytes. Cluster links would be freed if they exceed +# this limit. This is to primarily prevent send buffers from growing unbounded on links +# toward slow peers (E.g. PubSub messages being piled up). +# This limit is disabled by default. Enable this limit when 'mem_cluster_links' INFO field +# and/or 'send-buffer-allocated' entries in the 'CLUSTER LINKS` command output continuously increase. +# Minimum limit of 1gb is recommended so that cluster link buffer can fit in at least a single +# PubSub message by default. (client-query-buffer-limit default value is 1gb) +# +# cluster-link-sendbuf-limit 0 + +# Clusters can configure their announced hostname using this config. This is a common use case for +# applications that need to use TLS Server Name Indication (SNI) or dealing with DNS based +# routing. By default this value is only shown as additional metadata in the CLUSTER SLOTS +# command, but can be changed using 'cluster-preferred-endpoint-type' config. This value is +# communicated along the clusterbus to all nodes, setting it to an empty string will remove +# the hostname and also propagate the removal. +# +# cluster-announce-hostname "" + +# Clusters can advertise how clients should connect to them using either their IP address, +# a user defined hostname, or by declaring they have no endpoint. Which endpoint is +# shown as the preferred endpoint is set by using the cluster-preferred-endpoint-type +# config with values 'ip', 'hostname', or 'unknown-endpoint'. This value controls how +# the endpoint returned for MOVED/ASKING requests as well as the first field of CLUSTER SLOTS. +# If the preferred endpoint type is set to hostname, but no announced hostname is set, a '?' +# will be returned instead. +# +# When a cluster advertises itself as having an unknown endpoint, it's indicating that +# the server doesn't know how clients can reach the cluster. This can happen in certain +# networking situations where there are multiple possible routes to the node, and the +# server doesn't know which one the client took. In this case, the server is expecting +# the client to reach out on the same endpoint it used for making the last request, but use +# the port provided in the response. +# +# cluster-preferred-endpoint-type ip + # In order to setup your cluster make sure to read the documentation -# available at http://redis.io web site. +# available at https://redis.io web site. ########################## CLUSTER DOCKER/NAT support ######################## @@ -947,16 +1763,21 @@ lua-time-limit 5000 # # In order to make Redis Cluster working in such environments, a static # configuration where each node knows its public address is needed. The -# following two options are used for this scope, and are: +# following four options are used for this scope, and are: # # * cluster-announce-ip # * cluster-announce-port +# * cluster-announce-tls-port # * cluster-announce-bus-port # -# Each instruct the node about its address, client port, and cluster message -# bus port. The information is then published in the header of the bus packets -# so that other nodes will be able to correctly map the address of the node -# publishing the information. +# Each instructs the node about its address, client ports (for connections +# without and with TLS) and cluster message bus port. The information is then +# published in the header of the bus packets so that other nodes will be able to +# correctly map the address of the node publishing the information. +# +# If cluster-tls is set to yes and cluster-announce-tls-port is omitted or set +# to zero, then cluster-announce-port refers to the TLS port. Note also that +# cluster-announce-tls-port has no effect if cluster-tls is set to no. # # If the above options are not used, the normal Redis Cluster auto-detection # will be used instead. @@ -964,12 +1785,13 @@ lua-time-limit 5000 # Note that when remapped, the bus port may not be at the fixed offset of # clients port + 10000, so you can specify any port and bus-port depending # on how they get remapped. If the bus-port is not set, a fixed offset of -# 10000 will be used as usually. +# 10000 will be used as usual. # # Example: # # cluster-announce-ip 10.1.1.5 -# cluster-announce-port 6379 +# cluster-announce-tls-port 6379 +# cluster-announce-port 0 # cluster-announce-bus-port 6380 ################################## SLOW LOG ################################### @@ -1017,10 +1839,24 @@ slowlog-max-len 128 # "CONFIG SET latency-monitor-threshold " if needed. latency-monitor-threshold 0 +################################ LATENCY TRACKING ############################## + +# The Redis extended latency monitoring tracks the per command latencies and enables +# exporting the percentile distribution via the INFO latencystats command, +# and cumulative latency distributions (histograms) via the LATENCY command. +# +# By default, the extended latency monitoring is enabled since the overhead +# of keeping track of the command latency is very small. +# latency-tracking yes + +# By default the exported latency percentiles via the INFO latencystats command +# are the p50, p99, and p999. +# latency-tracking-info-percentiles 50 99 99.9 + ############################# EVENT NOTIFICATION ############################## # Redis can notify Pub/Sub clients about events happening in the key space. -# This feature is documented at http://redis.io/topics/notifications +# This feature is documented at https://redis.io/topics/notifications # # For instance if keyspace events notification is enabled, and a client # performs a DEL operation on key "foo" stored in the Database 0, two @@ -1042,7 +1878,13 @@ latency-monitor-threshold 0 # z Sorted set commands # x Expired events (events generated every time a key expires) # e Evicted events (events generated when a key is evicted for maxmemory) -# A Alias for g$lshzxe, so that the "AKE" string means all the events. +# n New key events (Note: not included in the 'A' class) +# t Stream commands +# d Module key type events +# m Key-miss events (Note: It is not included in the 'A' class) +# A Alias for g$lshzxetd, so that the "AKE" string means all the events +# (Except key-miss events which are excluded from 'A' due to their +# unique nature). # # The "notify-keyspace-events" takes as argument a string that is composed # of zero or multiple characters. The empty string means that notifications @@ -1068,8 +1910,8 @@ notify-keyspace-events "" # Hashes are encoded using a memory efficient data structure when they have a # small number of entries, and the biggest entry does not exceed a given # threshold. These thresholds can be configured using the following directives. -hash-max-ziplist-entries 512 -hash-max-ziplist-value 64 +hash-max-listpack-entries 512 +hash-max-listpack-value 64 # Lists are also encoded in a special way to save a lot of space. # The number of entries allowed per internal list node can be specified @@ -1084,7 +1926,7 @@ hash-max-ziplist-value 64 # per list node. # The highest performing option is usually -2 (8 Kb size) or -1 (4 Kb size), # but if your use case is unique, adjust the settings as necessary. -list-max-ziplist-size -2 +list-max-listpack-size -2 # Lists may also be compressed. # Compress depth is the number of quicklist ziplist nodes from *each* side of @@ -1112,8 +1954,8 @@ set-max-intset-entries 512 # Similarly to hashes and lists, sorted sets are also specially encoded in # order to save a lot of space. This encoding is only used when the length and # elements of a sorted set are below the following limits: -zset-max-ziplist-entries 128 -zset-max-ziplist-value 64 +zset-max-listpack-entries 128 +zset-max-listpack-value 64 # HyperLogLog sparse representation bytes limit. The limit includes the # 16 bytes header. When an HyperLogLog using the sparse representation crosses @@ -1135,7 +1977,7 @@ hll-sparse-max-bytes 3000 # maximum number of items it may contain before switching to a new node when # appending new stream entries. If any of the following settings are set to # zero, the limit is ignored, so for instance it is possible to set just a -# max entires limit by setting max-bytes to 0 and max-entries to the desired +# max entries limit by setting max-bytes to 0 and max-entries to the desired # value. stream-node-max-bytes 4096 stream-node-max-entries 100 @@ -1168,7 +2010,7 @@ activerehashing yes # The limit can be set differently for the three different classes of clients: # # normal -> normal clients including MONITOR clients -# replica -> replica clients +# replica -> replica clients # pubsub -> clients subscribed to at least one pubsub channel or pattern # # The syntax of every client-output-buffer-limit directive is the following: @@ -1192,6 +2034,13 @@ activerehashing yes # Instead there is a default limit for pubsub and replica clients, since # subscribers and replicas receive data in a push fashion. # +# Note that it doesn't make sense to set the replica clients output buffer +# limit lower than the repl-backlog-size config (partial sync will succeed +# and then replica will get disconnected). +# Such a configuration is ignored (the size of repl-backlog-size will be used). +# This doesn't have memory consumption implications since the replica client +# will share the backlog buffers memory. +# # Both the hard or the soft limit can be disabled by setting them to zero. client-output-buffer-limit normal 0 0 0 client-output-buffer-limit replica 256mb 64mb 60 @@ -1205,9 +2054,28 @@ client-output-buffer-limit pubsub 32mb 8mb 60 # # client-query-buffer-limit 1gb +# In some scenarios client connections can hog up memory leading to OOM +# errors or data eviction. To avoid this we can cap the accumulated memory +# used by all client connections (all pubsub and normal clients). Once we +# reach that limit connections will be dropped by the server freeing up +# memory. The server will attempt to drop the connections using the most +# memory first. We call this mechanism "client eviction". +# +# Client eviction is configured using the maxmemory-clients setting as follows: +# 0 - client eviction is disabled (default) +# +# A memory value can be used for the client eviction threshold, +# for example: +# maxmemory-clients 1g +# +# A percentage value (between 1% and 100%) means the client eviction threshold +# is based on a percentage of the maxmemory setting. For example to set client +# eviction at 5% of maxmemory: +# maxmemory-clients 5% + # In the Redis protocol, bulk requests, that are, elements representing single -# strings, are normally limited ot 512 mb. However you can change this limit -# here. +# strings, are normally limited to 512 mb. However you can change this limit +# here, but must be 1mb or greater # # proto-max-bulk-len 512mb @@ -1235,9 +2103,9 @@ hz 10 # # Since the default HZ value by default is conservatively set to 10, Redis # offers, and enables by default, the ability to use an adaptive HZ value -# which will temporary raise when there are many connected clients. +# which will temporarily raise when there are many connected clients. # -# When dynamic HZ is enabled, the actual configured HZ will be used as +# When dynamic HZ is enabled, the actual configured HZ will be used # as a baseline, but multiples of the configured HZ value will be actually # used as needed once more clients are connected. In this way an idle # instance will use very little CPU time while a busy instance will be @@ -1245,13 +2113,13 @@ hz 10 dynamic-hz yes # When a child rewrites the AOF file, if the following option is enabled -# the file will be fsync-ed every 32 MB of data generated. This is useful +# the file will be fsync-ed every 4 MB of data generated. This is useful # in order to commit the file to the disk more incrementally and avoid # big latency spikes. aof-rewrite-incremental-fsync yes # When redis saves RDB file, if the following option is enabled -# the file will be fsync-ed every 32 MB of data generated. This is useful +# the file will be fsync-ed every 4 MB of data generated. This is useful # in order to commit the file to the disk more incrementally and avoid # big latency spikes. rdb-save-incremental-fsync yes @@ -1302,7 +2170,7 @@ rdb-save-incremental-fsync yes # for the key counter to be divided by two (or decremented if it has a value # less <= 10). # -# The default value for the lfu-decay-time is 1. A Special value of 0 means to +# The default value for the lfu-decay-time is 1. A special value of 0 means to # decay the counter every time it happens to be scanned. # # lfu-log-factor 10 @@ -1310,10 +2178,6 @@ rdb-save-incremental-fsync yes ########################### ACTIVE DEFRAGMENTATION ####################### # -# WARNING THIS FEATURE IS EXPERIMENTAL. However it was stress tested -# even in production and manually tested by multiple engineers for some -# time. -# # What is active defragmentation? # ------------------------------- # @@ -1326,7 +2190,7 @@ rdb-save-incremental-fsync yes # restart is needed in order to lower the fragmentation, or at least to flush # away all the data and create it again. However thanks to this feature # implemented by Oran Agra for Redis 4.0 this process can happen at runtime -# in an "hot" way, while the server is running. +# in a "hot" way, while the server is running. # # Basically when the fragmentation is over a certain level (see the # configuration options below) Redis will start to create new copies of the @@ -1352,8 +2216,8 @@ rdb-save-incremental-fsync yes # defragmentation process. If you are not sure about what they mean it is # a good idea to leave the defaults untouched. -# Enabled active defragmentation -# activedefrag yes +# Active defragmentation is disabled by default +# activedefrag no # Minimum amount of fragmentation waste to start active defrag # active-defrag-ignore-bytes 100mb @@ -1364,12 +2228,49 @@ rdb-save-incremental-fsync yes # Maximum percentage of fragmentation at which we use maximum effort # active-defrag-threshold-upper 100 -# Minimal effort for defrag in CPU percentage -# active-defrag-cycle-min 5 +# Minimal effort for defrag in CPU percentage, to be used when the lower +# threshold is reached +# active-defrag-cycle-min 1 -# Maximal effort for defrag in CPU percentage -# active-defrag-cycle-max 75 +# Maximal effort for defrag in CPU percentage, to be used when the upper +# threshold is reached +# active-defrag-cycle-max 25 # Maximum number of set/hash/zset/list fields that will be processed from # the main dictionary scan # active-defrag-max-scan-fields 1000 + +# Jemalloc background thread for purging will be enabled by default +jemalloc-bg-thread yes + +# It is possible to pin different threads and processes of Redis to specific +# CPUs in your system, in order to maximize the performances of the server. +# This is useful both in order to pin different Redis threads in different +# CPUs, but also in order to make sure that multiple Redis instances running +# in the same host will be pinned to different CPUs. +# +# Normally you can do this using the "taskset" command, however it is also +# possible to this via Redis configuration directly, both in Linux and FreeBSD. +# +# You can pin the server/IO threads, bio threads, aof rewrite child process, and +# the bgsave child process. The syntax to specify the cpu list is the same as +# the taskset command: +# +# Set redis server/io threads to cpu affinity 0,2,4,6: +# server_cpulist 0-7:2 +# +# Set bio threads to cpu affinity 1,3: +# bio_cpulist 1,3 +# +# Set aof rewrite child process to cpu affinity 8,9,10,11: +# aof_rewrite_cpulist 8-11 +# +# Set bgsave child process to cpu affinity 1,10,11 +# bgsave_cpulist 1,10-11 + +# In some cases redis will emit warnings and even refuse to start if it detects +# that the system is in bad state, it is possible to suppress these warnings +# by setting the following config which takes a space delimited list of warnings +# to suppress +# +# ignore-warnings ARM64-COW-BUG diff --git a/indexing/indexing.conf b/indexing/indexing.conf index 3062d7e..4e64f7f 100644 --- a/indexing/indexing.conf +++ b/indexing/indexing.conf @@ -24,7 +24,7 @@ # to customize a few per-server settings. Include files can include # other files, so use this wisely. # -# Notice option "include" won't be rewritten by command "CONFIG REWRITE" +# Note that option "include" won't be rewritten by command "CONFIG REWRITE" # from admin or Redis Sentinel. Since Redis always uses the last processed # line as value of a configuration directive, you'd better put includes # at the beginning of this file to avoid overwriting config change at runtime. @@ -32,8 +32,17 @@ # If instead you are interested in using includes to override configuration # options, it is better to use include as the last line. # +# Included paths may contain wildcards. All files matching the wildcards will +# be included in alphabetical order. +# Note that if an include path contains a wildcards but no files match it when +# the server is started, the include statement will be ignored and no error will +# be emitted. It is safe, therefore, to include wildcard files from empty +# directories. +# # include /path/to/local.conf # include /path/to/other.conf +# include /path/to/fragments/*.conf +# ################################## MODULES ##################################### @@ -46,55 +55,92 @@ ################################## NETWORK ##################################### # By default, if no "bind" configuration directive is specified, Redis listens -# for connections from all the network interfaces available on the server. +# for connections from all available network interfaces on the host machine. # It is possible to listen to just one or multiple selected interfaces using # the "bind" configuration directive, followed by one or more IP addresses. +# Each address can be prefixed by "-", which means that redis will not fail to +# start if the address is not available. Being not available only refers to +# addresses that does not correspond to any network interface. Addresses that +# are already in use will always fail, and unsupported protocols will always BE +# silently skipped. # # Examples: # -# bind 192.168.1.100 10.0.0.1 -# bind 127.0.0.1 ::1 +# bind 192.168.1.100 10.0.0.1 # listens on two specific IPv4 addresses +# bind 127.0.0.1 ::1 # listens on loopback IPv4 and IPv6 +# bind * -::* # like the default, all available interfaces # # ~~~ WARNING ~~~ If the computer running Redis is directly exposed to the # internet, binding to all the interfaces is dangerous and will expose the # instance to everybody on the internet. So by default we uncomment the -# following bind directive, that will force Redis to listen only into -# the IPv4 loopback interface address (this means Redis will be able to -# accept connections only from clients running into the same computer it -# is running). +# following bind directive, that will force Redis to listen only on the +# IPv4 and IPv6 (if available) loopback interface addresses (this means Redis +# will only be able to accept client connections from the same host that it is +# running on). # # IF YOU ARE SURE YOU WANT YOUR INSTANCE TO LISTEN TO ALL THE INTERFACES -# JUST COMMENT THE FOLLOWING LINE. +# COMMENT OUT THE FOLLOWING LINE. +# +# You will also need to set a password unless you explicitly disable protected +# mode. # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -bind 127.0.0.1 +bind 127.0.0.1 -::1 + +# By default, outgoing connections (from replica to master, from Sentinel to +# instances, cluster bus, etc.) are not bound to a specific local address. In +# most cases, this means the operating system will handle that based on routing +# and the interface through which the connection goes out. +# +# Using bind-source-addr it is possible to configure a specific address to bind +# to, which may also affect how the connection gets routed. +# +# Example: +# +# bind-source-addr 10.0.0.1 # Protected mode is a layer of security protection, in order to avoid that # Redis instances left open on the internet are accessed and exploited. # -# When protected mode is on and if: -# -# 1) The server is not binding explicitly to a set of addresses using the -# "bind" directive. -# 2) No password is configured. -# -# The server only accepts connections from clients connecting from the -# IPv4 and IPv6 loopback addresses 127.0.0.1 and ::1, and from Unix domain -# sockets. +# When protected mode is on and the default user has no password, the server +# only accepts local connections from the IPv4 address (127.0.0.1), IPv6 address +# (::1) or Unix domain sockets. # # By default protected mode is enabled. You should disable it only if # you are sure you want clients from other hosts to connect to Redis -# even if no authentication is configured, nor a specific set of interfaces -# are explicitly listed using the "bind" directive. +# even if no authentication is configured. protected-mode yes +# Redis uses default hardened security configuration directives to reduce the +# attack surface on innocent users. Therefore, several sensitive configuration +# directives are immutable, and some potentially-dangerous commands are blocked. +# +# Configuration directives that control files that Redis writes to (e.g., 'dir' +# and 'dbfilename') and that aren't usually modified during runtime +# are protected by making them immutable. +# +# Commands that can increase the attack surface of Redis and that aren't usually +# called by users are blocked by default. +# +# These can be exposed to either all connections or just local ones by setting +# each of the configs listed below to either of these values: +# +# no - Block for any connection (remain immutable) +# yes - Allow for any connection (no protection) +# local - Allow only for local connections. Ones originating from the +# IPv4 address (127.0.0.1), IPv6 address (::1) or Unix domain sockets. +# +# enable-protected-configs no +# enable-debug-command no +# enable-module-command no + # Accept connections on the specified port, default is 6379 (IANA #815344). # If port 0 is specified Redis will not listen on a TCP socket. port 0 # TCP listen() backlog. # -# In high requests-per-second environments you need an high backlog in order -# to avoid slow clients connections issues. Note that the Linux kernel +# In high requests-per-second environments you need a high backlog in order +# to avoid slow clients connection issues. Note that the Linux kernel # will silently truncate it to the value of /proc/sys/net/core/somaxconn so # make sure to raise both the value of somaxconn and tcp_max_syn_backlog # in order to get the desired effect. @@ -118,8 +164,8 @@ timeout 0 # of communication. This is useful for two reasons: # # 1) Detect dead peers. -# 2) Take the connection alive from the point of view of network -# equipment in the middle. +# 2) Force network equipment in the middle to consider the connection to be +# alive. # # On Linux, the specified value (in seconds) is the period used to send ACKs. # Note that to close the connection the double of the time is needed. @@ -129,6 +175,16 @@ timeout 0 # Redis default starting with Redis 3.2.1. tcp-keepalive 300 +# Apply OS-specific mechanism to mark the listening socket with the specified +# ID, to support advanced routing and filtering capabilities. +# +# On Linux, the ID represents a connection mark. +# On FreeBSD, the ID represents a socket cookie ID. +# On OpenBSD, the ID represents a route table ID. +# +# The default value is 0, which implies no marking is required. +# socket-mark-id 0 + ################################# TLS/SSL ##################################### # By default, TLS/SSL is disabled. To enable it, the "tls-port" configuration @@ -144,8 +200,32 @@ tcp-keepalive 300 # # tls-cert-file redis.crt # tls-key-file redis.key +# +# If the key file is encrypted using a passphrase, it can be included here +# as well. +# +# tls-key-file-pass secret -# Configure a DH parameters file to enable Diffie-Hellman (DH) key exchange: +# Normally Redis uses the same certificate for both server functions (accepting +# connections) and client functions (replicating from a master, establishing +# cluster bus connections, etc.). +# +# Sometimes certificates are issued with attributes that designate them as +# client-only or server-only certificates. In that case it may be desired to use +# different certificates for incoming (server) and outgoing (client) +# connections. To do that, use the following directives: +# +# tls-client-cert-file client.crt +# tls-client-key-file client.key +# +# If the key file is encrypted using a passphrase, it can be included here +# as well. +# +# tls-client-key-file-pass secret + +# Configure a DH parameters file to enable Diffie-Hellman (DH) key exchange, +# required by older versions of OpenSSL (<3.0). Newer versions do not require +# this configuration and recommend against it. # # tls-dh-params-file redis.dh @@ -159,9 +239,12 @@ tcp-keepalive 300 # By default, clients (including replica servers) on a TLS port are required # to authenticate using valid client side certificates. # -# It is possible to disable authentication using this directive. +# If "no" is specified, client certificates are not required and not accepted. +# If "optional" is specified, client certificates are accepted and must be +# valid if provided, but are not required. # # tls-auth-clients no +# tls-auth-clients optional # By default, a Redis replica does not attempt to establish a TLS connection # with its master. @@ -175,9 +258,12 @@ tcp-keepalive 300 # # tls-cluster yes -# Explicitly specify TLS versions to support. Allowed values are case insensitive -# and include "TLSv1", "TLSv1.1", "TLSv1.2", "TLSv1.3" (OpenSSL >= 1.1.1) or -# any combination. To enable only TLSv1.2 and TLSv1.3, use: +# By default, only TLSv1.2 and TLSv1.3 are enabled and it is highly recommended +# that older formally deprecated versions are kept disabled to reduce the attack surface. +# You can explicitly specify TLS versions to support. +# Allowed values are case insensitive and include "TLSv1", "TLSv1.1", "TLSv1.2", +# "TLSv1.3" (OpenSSL >= 1.1.1) or any combination. +# To enable only TLSv1.2 and TLSv1.3, use: # # tls-protocols "TLSv1.2 TLSv1.3" @@ -199,22 +285,46 @@ tcp-keepalive 300 # # tls-prefer-server-ciphers yes +# By default, TLS session caching is enabled to allow faster and less expensive +# reconnections by clients that support it. Use the following directive to disable +# caching. +# +# tls-session-caching no + +# Change the default number of TLS sessions cached. A zero value sets the cache +# to unlimited size. The default size is 20480. +# +# tls-session-cache-size 5000 + +# Change the default timeout of cached TLS sessions. The default timeout is 300 +# seconds. +# +# tls-session-cache-timeout 60 + ################################# GENERAL ##################################### # By default Redis does not run as a daemon. Use 'yes' if you need it. # Note that Redis will write a pid file in /var/run/redis.pid when daemonized. +# When Redis is supervised by upstart or systemd, this parameter has no impact. daemonize yes # If you run Redis from upstart or systemd, Redis can interact with your # supervision tree. Options: # supervised no - no supervision interaction # supervised upstart - signal upstart by putting Redis into SIGSTOP mode +# requires "expect stop" in your upstart job config # supervised systemd - signal systemd by writing READY=1 to $NOTIFY_SOCKET +# on startup, and updating Redis status on a regular +# basis. # supervised auto - detect upstart or systemd method based on # UPSTART_JOB or NOTIFY_SOCKET environment variables # Note: these supervision methods only signal "process is ready." -# They do not enable continuous liveness pings back to your supervisor. -supervised no +# They do not enable continuous pings back to your supervisor. +# +# The default is "no". To run under upstart/systemd, you can simply uncomment +# the line below: +# +# supervised auto # If a pid file is specified, Redis writes it where specified at startup # and removes it at exit. @@ -225,6 +335,9 @@ supervised no # # Creating a pid file is best effort: if Redis is not able to create it # nothing bad happens, the server will start and run normally. +# +# Note that on modern Linux systems "/run/redis.pid" is more conforming +# and should be used instead. pidfile indexing.pid # Specify the server verbosity level. @@ -238,7 +351,7 @@ loglevel notice # Specify the log file name. Also the empty string can be used to force # Redis to log on the standard output. Note that if you use standard # output for logging but daemonize, logs will be sent to /dev/null -# logfile "indexing.log" +logfile "" # To enable logging to the system logger, just set 'syslog-enabled' to yes, # and optionally update the other syslog parameters to suit your needs. @@ -250,41 +363,73 @@ loglevel notice # Specify the syslog facility. Must be USER or between LOCAL0-LOCAL7. # syslog-facility local0 +# To disable the built in crash log, which will possibly produce cleaner core +# dumps when they are needed, uncomment the following: +# +# crash-log-enabled no + +# To disable the fast memory check that's run as part of the crash log, which +# will possibly let redis terminate sooner, uncomment the following: +# +# crash-memcheck-enabled no + # Set the number of databases. The default database is DB 0, you can select # a different one on a per-connection basis using SELECT where # dbid is a number between 0 and 'databases'-1 databases 16 # By default Redis shows an ASCII art logo only when started to log to the -# standard output and if the standard output is a TTY. Basically this means -# that normally a logo is displayed only in interactive sessions. +# standard output and if the standard output is a TTY and syslog logging is +# disabled. Basically this means that normally a logo is displayed only in +# interactive sessions. # # However it is possible to force the pre-4.0 behavior and always show a # ASCII art logo in startup logs by setting the following option to yes. -always-show-logo yes +always-show-logo no + +# By default, Redis modifies the process title (as seen in 'top' and 'ps') to +# provide some runtime information. It is possible to disable this and leave +# the process name as executed by setting the following to no. +set-proc-title yes + +# When changing the process title, Redis uses the following template to construct +# the modified title. +# +# Template variables are specified in curly brackets. The following variables are +# supported: +# +# {title} Name of process as executed if parent, or type of child process. +# {listen-addr} Bind address or '*' followed by TCP or TLS port listening on, or +# Unix socket if only that's available. +# {server-mode} Special mode, i.e. "[sentinel]" or "[cluster]". +# {port} TCP port listening on, or 0. +# {tls-port} TLS port listening on, or 0. +# {unixsocket} Unix domain socket listening on, or "". +# {config-file} Name of configuration file used. +# +proc-title-template "{title} {listen-addr} {server-mode}" ################################ SNAPSHOTTING ################################ -# -# Save the DB on disk: -# -# save -# -# Will save the DB if both the given number of seconds and the given -# number of write operations against the DB occurred. -# -# In the example below the behaviour will be to save: -# after 900 sec (15 min) if at least 1 key changed -# after 300 sec (5 min) if at least 10 keys changed -# after 60 sec if at least 10000 keys changed -# -# Note: you can disable saving completely by commenting out all "save" lines. -# -# It is also possible to remove all the previously configured save -# points by adding a save directive with a single empty string argument -# like in the following example: -# -# save "" +# Save the DB to disk. +# +# save [ ...] +# +# Redis will save the DB if the given number of seconds elapsed and it +# surpassed the given number of write operations against the DB. +# +# Snapshotting can be completely disabled with a single empty string argument +# as in following example: +# +# save "" +# +# Unless specified otherwise, by default Redis will save the DB: +# * After 3600 seconds (an hour) if at least 1 change was performed +# * After 300 seconds (5 minutes) if at least 100 changes were performed +# * After 60 seconds if at least 10000 changes were performed +# +# You can set these explicitly by uncommenting the following line. +# save 3600 1 # By default Redis will stop accepting writes if RDB snapshots are enabled @@ -303,7 +448,7 @@ save 3600 1 stop-writes-on-bgsave-error yes # Compress string objects using LZF when dump .rdb databases? -# For default that's set to 'yes' as it's almost always a win. +# By default compression is enabled as it's almost always a win. # If you want to save some CPU in the saving child set it to 'no' but # the dataset will likely be bigger if you have compressible values or keys. rdbcompression yes @@ -317,6 +462,21 @@ rdbcompression yes # tell the loading code to skip the check. rdbchecksum yes +# Enables or disables full sanitization checks for ziplist and listpack etc when +# loading an RDB or RESTORE payload. This reduces the chances of a assertion or +# crash later on while processing commands. +# Options: +# no - Never perform full sanitization +# yes - Always perform full sanitization +# clients - Perform full sanitization only for user connections. +# Excludes: RDB files, RESTORE commands received from the master +# connection, and client connections which have the +# skip-sanitize-payload ACL flag. +# The default should be 'clients' but since it currently affects cluster +# resharding via MIGRATE, it is temporarily set to 'no' by default. +# +# sanitize-dump-payload no + # The filename where to dump the DB dbfilename dump.rdb @@ -391,11 +551,12 @@ dir ./ # still reply to client requests, possibly with out of date data, or the # data set may just be empty if this is the first synchronization. # -# 2) if replica-serve-stale-data is set to 'no' the replica will reply with -# an error "SYNC with master in progress" to all the kind of commands -# but to INFO, replicaOF, AUTH, PING, SHUTDOWN, REPLCONF, ROLE, CONFIG, -# SUBSCRIBE, UNSUBSCRIBE, PSUBSCRIBE, PUNSUBSCRIBE, PUBLISH, PUBSUB, -# COMMAND, POST, HOST: and LATENCY. +# 2) If replica-serve-stale-data is set to 'no' the replica will reply with error +# "MASTERDOWN Link with MASTER is down and replica-serve-stale-data is set to 'no'" +# to all data access commands, excluding commands such as: +# INFO, REPLICAOF, AUTH, SHUTDOWN, REPLCONF, ROLE, CONFIG, SUBSCRIBE, +# UNSUBSCRIBE, PSUBSCRIBE, PUNSUBSCRIBE, PUBLISH, PUBSUB, COMMAND, POST, +# HOST and LATENCY. # replica-serve-stale-data yes @@ -442,7 +603,7 @@ replica-read-only yes # # With slow disks and fast (large bandwidth) networks, diskless replication # works better. -repl-diskless-sync no +repl-diskless-sync yes # When diskless replication is enabled, it is possible to configure the delay # the server waits in order to spawn the child that transfers the RDB via socket @@ -456,33 +617,43 @@ repl-diskless-sync no # it entirely just set it to 0 seconds and the transfer will start ASAP. repl-diskless-sync-delay 5 +# When diskless replication is enabled with a delay, it is possible to let +# the replication start before the maximum delay is reached if the maximum +# number of replicas expected have connected. Default of 0 means that the +# maximum is not defined and Redis will wait the full delay. +repl-diskless-sync-max-replicas 0 + # ----------------------------------------------------------------------------- # WARNING: RDB diskless load is experimental. Since in this setup the replica # does not immediately store an RDB on disk, it may cause data loss during # failovers. RDB diskless load + Redis modules not handling I/O reads may also # cause Redis to abort in case of I/O errors during the initial synchronization -# stage with the master. Use only if your do what you are doing. +# stage with the master. Use only if you know what you are doing. # ----------------------------------------------------------------------------- # # Replica can load the RDB it reads from the replication link directly from the # socket, or store the RDB to a file and read that file after it was completely -# recived from the master. +# received from the master. # # In many cases the disk is slower than the network, and storing and loading # the RDB file may increase replication time (and even increase the master's -# Copy on Write memory and salve buffers). +# Copy on Write memory and replica buffers). # However, parsing the RDB file directly from the socket may mean that we have # to flush the contents of the current database before the full rdb was # received. For this reason we have the following options: # # "disabled" - Don't use diskless load (store the rdb file to the disk first) # "on-empty-db" - Use diskless load only when it is completely safe. -# "swapdb" - Keep a copy of the current db contents in RAM while parsing -# the data directly from the socket. note that this requires -# sufficient memory, if you don't have it, you risk an OOM kill. +# "swapdb" - Keep current db contents in RAM while parsing the data directly +# from the socket. Replicas in this mode can keep serving current +# data set while replication is in progress, except for cases where +# they can't recognize master as having a data set from same +# replication history. +# Note that this requires sufficient memory, if you don't have it, +# you risk an OOM kill. repl-diskless-load disabled -# Replicas send PINGs to server in a predefined interval. It's possible to +# Master send PINGs to its replicas in a predefined interval. It's possible to # change this interval with the repl_ping_replica_period option. The default # value is 10 seconds. # @@ -496,7 +667,8 @@ repl-diskless-load disabled # # It is important to make sure that this value is greater than the value # specified for repl-ping-replica-period otherwise a timeout will be detected -# every time there is low traffic between the master and the replica. +# every time there is low traffic between the master and the replica. The default +# value is 60 seconds. # # repl-timeout 60 @@ -521,21 +693,21 @@ repl-disable-tcp-nodelay no # partial resync is enough, just passing the portion of data the replica # missed while disconnected. # -# The bigger the replication backlog, the longer the time the replica can be -# disconnected and later be able to perform a partial resynchronization. +# The bigger the replication backlog, the longer the replica can endure the +# disconnect and later be able to perform a partial resynchronization. # -# The backlog is only allocated once there is at least a replica connected. +# The backlog is only allocated if there is at least one replica connected. # # repl-backlog-size 1mb -# After a master has no longer connected replicas for some time, the backlog -# will be freed. The following option configures the amount of seconds that -# need to elapse, starting from the time the last replica disconnected, for -# the backlog buffer to be freed. +# After a master has no connected replicas for some time, the backlog will be +# freed. The following option configures the amount of seconds that need to +# elapse, starting from the time the last replica disconnected, for the backlog +# buffer to be freed. # # Note that replicas never free the backlog for timeout, since they may be # promoted to masters later, and should be able to correctly "partially -# resynchronize" with the replicas: hence they should always accumulate backlog. +# resynchronize" with other replicas: hence they should always accumulate backlog. # # A value of 0 means to never release the backlog. # @@ -556,6 +728,43 @@ repl-disable-tcp-nodelay no # By default the priority is 100. replica-priority 100 +# The propagation error behavior controls how Redis will behave when it is +# unable to handle a command being processed in the replication stream from a master +# or processed while reading from an AOF file. Errors that occur during propagation +# are unexpected, and can cause data inconsistency. However, there are edge cases +# in earlier versions of Redis where it was possible for the server to replicate or persist +# commands that would fail on future versions. For this reason the default behavior +# is to ignore such errors and continue processing commands. +# +# If an application wants to ensure there is no data divergence, this configuration +# should be set to 'panic' instead. The value can also be set to 'panic-on-replicas' +# to only panic when a replica encounters an error on the replication stream. One of +# these two panic values will become the default value in the future once there are +# sufficient safety mechanisms in place to prevent false positive crashes. +# +# propagation-error-behavior ignore + +# Replica ignore disk write errors controls the behavior of a replica when it is +# unable to persist a write command received from its master to disk. By default, +# this configuration is set to 'no' and will crash the replica in this condition. +# It is not recommended to change this default, however in order to be compatible +# with older versions of Redis this config can be toggled to 'yes' which will just +# log a warning and execute the write command it got from the master. +# +# replica-ignore-disk-write-errors no + +# ----------------------------------------------------------------------------- +# By default, Redis Sentinel includes all replicas in its reports. A replica +# can be excluded from Redis Sentinel's announcements. An unannounced replica +# will be ignored by the 'sentinel replicas ' command and won't be +# exposed to Redis Sentinel's clients. +# +# This option does not change the behavior of replica-priority. Even with +# replica-announced set to 'no', the replica can be promoted to master. To +# prevent this behavior, set replica-priority to 0. +# +# replica-announced yes + # It is possible for a master to stop accepting writes if there are less than # N replicas connected, having a lag less or equal than M seconds. # @@ -585,8 +794,8 @@ replica-priority 100 # Another place where this info is available is in the output of the # "ROLE" command of a master. # -# The listed IP and address normally reported by a replica is obtained -# in the following way: +# The listed IP address and port normally reported by a replica is +# obtained in the following way: # # IP: The address is auto detected by checking the peer address # of the socket used by the replica to connect with the master. @@ -596,7 +805,7 @@ replica-priority 100 # listen for connections. # # However when port forwarding or Network Address Translation (NAT) is -# used, the replica may be actually reachable via different IP and port +# used, the replica may actually be reachable via different IP and port # pairs. The following two options can be used by a replica in order to # report to its master a specific set of IP and port, so that both INFO # and ROLE will report those values. @@ -611,9 +820,9 @@ replica-priority 100 # Redis implements server assisted support for client side caching of values. # This is implemented using an invalidation table that remembers, using -# 16 millions of slots, what clients may have certain subsets of keys. In turn +# a radix key indexed by key name, what clients have which keys. In turn # this is used in order to send invalidation messages to clients. Please -# to understand more about the feature check this page: +# check this page to understand more about the feature: # # https://redis.io/topics/client-side-caching # @@ -645,7 +854,7 @@ replica-priority 100 ################################## SECURITY ################################### -# Warning: since Redis is pretty fast an outside user can try up to +# Warning: since Redis is pretty fast, an outside user can try up to # 1 million passwords per second against a modern box. This means that you # should use very strong passwords, otherwise they will be very easy to break. # Note that because the password is really a shared secret between the client @@ -669,14 +878,18 @@ replica-priority 100 # AUTH (or the HELLO command AUTH option) in order to be authenticated and # start to work. # -# The ACL rules that describe what an user can do are the following: +# The ACL rules that describe what a user can do are the following: # # on Enable the user: it is possible to authenticate as this user. # off Disable the user: it's no longer possible to authenticate # with this user, however the already authenticated connections # will still work. -# + Allow the execution of that command -# - Disallow the execution of that command +# skip-sanitize-payload RESTORE dump-payload sanitization is skipped. +# sanitize-payload RESTORE dump-payload is sanitized (default). +# + Allow the execution of that command. +# May be used with `|` for allowing subcommands (e.g "+config|get") +# - Disallow the execution of that command. +# May be used with `|` for blocking subcommands (e.g "-config|set") # +@ Allow the execution of all the commands in such category # with valid categories are like @admin, @set, @sortedset, ... # and so forth, see the full list in the server.c file where @@ -684,10 +897,11 @@ replica-priority 100 # The special category @all means all the commands, but currently # present in the server, and that will be loaded in the future # via modules. -# +|subcommand Allow a specific subcommand of an otherwise -# disabled command. Note that this form is not -# allowed as negative like -DEBUG|SEGFAULT, but -# only additive starting with "+". +# +|first-arg Allow a specific first argument of an otherwise +# disabled command. It is only supported on commands with +# no sub-commands, and is not allowed as negative form +# like -SELECT|1, only additive starting with "+". This +# feature is deprecated and may be removed in the future. # allcommands Alias for +@all. Note that it implies the ability to execute # all the future commands loaded via the modules system. # nocommands Alias for -@all. @@ -695,9 +909,18 @@ replica-priority 100 # commands. For instance ~* allows all the keys. The pattern # is a glob-style pattern like the one of KEYS. # It is possible to specify multiple patterns. +# %R~ Add key read pattern that specifies which keys can be read +# from. +# %W~ Add key write pattern that specifies which keys can be +# written to. # allkeys Alias for ~* # resetkeys Flush the list of allowed keys patterns. -# > Add this passowrd to the list of valid password for the user. +# & Add a glob-style pattern of Pub/Sub channels that can be +# accessed by the user. It is possible to specify multiple channel +# patterns. +# allchannels Alias for &* +# resetchannels Flush the list of allowed channel patterns. +# > Add this password to the list of valid password for the user. # For example >mypass will add "mypass" to the list. # This directive clears the "nopass" flag (see later). # < Remove this password from the list of valid passwords. @@ -715,6 +938,14 @@ replica-priority 100 # reset Performs the following actions: resetpass, resetkeys, off, # -@all. The user returns to the same state it has immediately # after its creation. +# () Create a new selector with the options specified within the +# parentheses and attach it to the user. Each option should be +# space separated. The first character must be ( and the last +# character must be ). +# clearselectors Remove all of the currently attached selectors. +# Note this does not change the "root" user permissions, +# which are the permissions directly applied onto the +# user (outside the parentheses). # # ACL rules can be specified in any order: for instance you can start with # passwords, then flags, or key patterns. However note that the additive @@ -736,6 +967,40 @@ replica-priority 100 # # Basically ACL rules are processed left-to-right. # +# The following is a list of command categories and their meanings: +# * keyspace - Writing or reading from keys, databases, or their metadata +# in a type agnostic way. Includes DEL, RESTORE, DUMP, RENAME, EXISTS, DBSIZE, +# KEYS, EXPIRE, TTL, FLUSHALL, etc. Commands that may modify the keyspace, +# key or metadata will also have `write` category. Commands that only read +# the keyspace, key or metadata will have the `read` category. +# * read - Reading from keys (values or metadata). Note that commands that don't +# interact with keys, will not have either `read` or `write`. +# * write - Writing to keys (values or metadata) +# * admin - Administrative commands. Normal applications will never need to use +# these. Includes REPLICAOF, CONFIG, DEBUG, SAVE, MONITOR, ACL, SHUTDOWN, etc. +# * dangerous - Potentially dangerous (each should be considered with care for +# various reasons). This includes FLUSHALL, MIGRATE, RESTORE, SORT, KEYS, +# CLIENT, DEBUG, INFO, CONFIG, SAVE, REPLICAOF, etc. +# * connection - Commands affecting the connection or other connections. +# This includes AUTH, SELECT, COMMAND, CLIENT, ECHO, PING, etc. +# * blocking - Potentially blocking the connection until released by another +# command. +# * fast - Fast O(1) commands. May loop on the number of arguments, but not the +# number of elements in the key. +# * slow - All commands that are not Fast. +# * pubsub - PUBLISH / SUBSCRIBE related +# * transaction - WATCH / MULTI / EXEC related commands. +# * scripting - Scripting related. +# * set - Data type: sets related. +# * sortedset - Data type: zsets related. +# * list - Data type: lists related. +# * hash - Data type: hashes related. +# * string - Data type: strings related. +# * bitmap - Data type: bitmaps related. +# * hyperloglog - Data type: hyperloglog related. +# * geo - Data type: geo related. +# * stream - Data type: streams related. +# # For more information about ACL configuration please refer to # the Redis web site at https://redis.io/topics/acl @@ -743,16 +1008,15 @@ replica-priority 100 # # The ACL Log tracks failed commands and authentication events associated # with ACLs. The ACL Log is useful to troubleshoot failed commands blocked -# by ACLs. The ACL Log is stored in and consumes memory. There is no limit -# to its length.You can reclaim memory with ACL LOG RESET or set a maximum -# length below. +# by ACLs. The ACL Log is stored in memory. You can reclaim memory with +# ACL LOG RESET. Define the maximum entry length of the ACL Log below. acllog-max-len 128 # Using an external ACL file # # Instead of configuring users here in this file, it is possible to use # a stand-alone file just listing users. The two methods cannot be mixed: -# if you configure users here and at the same time you activate the exteranl +# if you configure users here and at the same time you activate the external # ACL file, the server will refuse to start. # # The format of the external ACL user file is exactly the same as the @@ -760,14 +1024,30 @@ acllog-max-len 128 # # aclfile /etc/redis/users.acl -# IMPORTANT NOTE: starting with Redis 6 "requirepass" is just a compatiblity +# IMPORTANT NOTE: starting with Redis 6 "requirepass" is just a compatibility # layer on top of the new ACL system. The option effect will be just setting # the password for the default user. Clients will still authenticate using # AUTH as usually, or more explicitly with AUTH default # if they follow the new protocol: both will work. # +# The requirepass is not compatible with aclfile option and the ACL LOAD +# command, these will cause requirepass to be ignored. +# # requirepass foobared +# New users are initialized with restrictive permissions by default, via the +# equivalent of this ACL rule 'off resetkeys -@all'. Starting with Redis 6.2, it +# is possible to manage access to Pub/Sub channels with ACL rules as well. The +# default Pub/Sub channels permission if new users is controlled by the +# acl-pubsub-default configuration directive, which accepts one of these values: +# +# allchannels: grants access to all Pub/Sub channels +# resetchannels: revokes access to all Pub/Sub channels +# +# From Redis 7.0, acl-pubsub-default defaults to 'resetchannels' permission. +# +# acl-pubsub-default resetchannels + # Command renaming (DEPRECATED). # # ------------------------------------------------------------------------ @@ -804,6 +1084,11 @@ acllog-max-len 128 # Once the limit is reached Redis will close all the new connections sending # an error 'max number of clients reached'. # +# IMPORTANT: When Redis Cluster is used, the max number of connections is also +# shared with the cluster bus: every node in the cluster will use two +# connections, one incoming and another outgoing. It is important to size the +# limit accordingly in case of very large clusters. +# # maxclients 10000 ############################## MEMORY MANAGEMENT ################################ @@ -851,14 +1136,12 @@ acllog-max-len 128 # Both LRU, LFU and volatile-ttl are implemented using approximated # randomized algorithms. # -# Note: with any of the above policies, Redis will return an error on write -# operations, when there are no suitable keys for eviction. -# -# At the date of writing these commands are: set setnx setex append -# incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd -# sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby -# zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby -# getset mset msetnx exec sort +# Note: with any of the above policies, when there are no suitable keys for +# eviction, Redis will return an error on write operations that require +# more memory. These are usually commands that create new keys, add data or +# modify existing keys. A few examples are: SET, INCR, HSET, LPUSH, SUNIONSTORE, +# SORT (due to the STORE argument), and EXEC (if the transaction includes any +# command that requires memory). # # The default is: # @@ -866,8 +1149,8 @@ acllog-max-len 128 # LRU, LFU and minimal TTL algorithms are not precise algorithms but approximated # algorithms (in order to save memory), so you can tune it for speed or -# accuracy. For default Redis will check five keys and pick the one that was -# used less recently, you can change the sample size using the following +# accuracy. By default Redis will check five keys and pick the one that was +# used least recently, you can change the sample size using the following # configuration directive. # # The default of 5 produces good enough results. 10 Approximates very closely @@ -875,6 +1158,14 @@ acllog-max-len 128 # # maxmemory-samples 5 +# Eviction processing is designed to function well with the default setting. +# If there is an unusually large amount of write traffic, this value may need to +# be increased. Decreasing this value may reduce latency at the risk of +# eviction processing effectiveness +# 0 = minimum latency, 10 = default, 100 = process without regard to latency +# +# maxmemory-eviction-tenacity 10 + # Starting from Redis 5, by default a replica will ignore its maxmemory setting # (unless it is promoted to master after a failover or manually). It means # that the eviction of keys will be just handled by the master, sending the @@ -907,8 +1198,8 @@ acllog-max-len 128 # it is possible to increase the expire "effort" that is normally set to # "1", to a greater value, up to the value "10". At its maximum value the # system will use more CPU, longer cycles (and technically may introduce -# more latency), and will tollerate less already expired keys still present -# in the system. It's a tradeoff betweeen memory, CPU and latecy. +# more latency), and will tolerate less already expired keys still present +# in the system. It's a tradeoff between memory, CPU and latency. # # active-expire-effort 1 @@ -968,6 +1259,13 @@ replica-lazy-flush no lazyfree-lazy-user-del no +# FLUSHDB, FLUSHALL, SCRIPT FLUSH and FUNCTION FLUSH support both asynchronous and synchronous +# deletion, which can be controlled by passing the [SYNC|ASYNC] flags into the +# commands. When neither flag is passed, this directive will be used to determine +# if the data should be deleted asynchronously. + +lazyfree-lazy-user-flush no + ################################ THREADED I/O ################################# # Redis is mostly single threaded, however there are certain threaded @@ -976,7 +1274,7 @@ lazyfree-lazy-user-del no # # Now it is also possible to handle Redis clients socket reads and writes # in different I/O threads. Since especially writing is so slow, normally -# Redis users use pipelining in order to speedup the Redis performances per +# Redis users use pipelining in order to speed up the Redis performances per # core, and spawn multiple instances in order to scale more. Using I/O # threads it is possible to easily speedup two times Redis without resorting # to pipelining nor sharding of the instance. @@ -994,7 +1292,7 @@ lazyfree-lazy-user-del no # # io-threads 4 # -# Setting io-threads to 1 will just use the main thread as usually. +# Setting io-threads to 1 will just use the main thread as usual. # When I/O threads are enabled, we only use threads for writes, that is # to thread the write(2) syscall and transfer the client buffers to the # socket. However it is also possible to enable threading of reads and @@ -1006,14 +1304,58 @@ lazyfree-lazy-user-del no # Usually threading reads doesn't help much. # # NOTE 1: This configuration directive cannot be changed at runtime via -# CONFIG SET. Aso this feature currently does not work when SSL is +# CONFIG SET. Also, this feature currently does not work when SSL is # enabled. # # NOTE 2: If you want to test the Redis speedup using redis-benchmark, make # sure you also run the benchmark itself in threaded mode, using the -# --threads option to match the number of Redis theads, otherwise you'll not +# --threads option to match the number of Redis threads, otherwise you'll not # be able to notice the improvements. +############################ KERNEL OOM CONTROL ############################## + +# On Linux, it is possible to hint the kernel OOM killer on what processes +# should be killed first when out of memory. +# +# Enabling this feature makes Redis actively control the oom_score_adj value +# for all its processes, depending on their role. The default scores will +# attempt to have background child processes killed before all others, and +# replicas killed before masters. +# +# Redis supports these options: +# +# no: Don't make changes to oom-score-adj (default). +# yes: Alias to "relative" see below. +# absolute: Values in oom-score-adj-values are written as is to the kernel. +# relative: Values are used relative to the initial value of oom_score_adj when +# the server starts and are then clamped to a range of -1000 to 1000. +# Because typically the initial value is 0, they will often match the +# absolute values. +oom-score-adj no + +# When oom-score-adj is used, this directive controls the specific values used +# for master, replica and background child processes. Values range -2000 to +# 2000 (higher means more likely to be killed). +# +# Unprivileged processes (not root, and without CAP_SYS_RESOURCE capabilities) +# can freely increase their value, but not decrease it below its initial +# settings. This means that setting oom-score-adj to "relative" and setting the +# oom-score-adj-values to positive values will always succeed. +oom-score-adj-values 0 200 800 + + +#################### KERNEL transparent hugepage CONTROL ###################### + +# Usually the kernel Transparent Huge Pages control is set to "madvise" or +# or "never" by default (/sys/kernel/mm/transparent_hugepage/enabled), in which +# case this config has no effect. On systems in which it is set to "always", +# redis will attempt to disable it specifically for the redis process in order +# to avoid latency problems specifically with fork(2) and CoW. +# If for some reason you prefer to keep it enabled, you can set this config to +# "no" and the kernel global to "always". + +disable-thp yes + ############################## APPEND ONLY MODE ############################### # By default Redis asynchronously dumps the dataset on disk. This mode is @@ -1032,14 +1374,43 @@ lazyfree-lazy-user-del no # If the AOF is enabled on startup Redis will load the AOF, that is the file # with the better durability guarantees. # -# Please check http://redis.io/topics/persistence for more information. +# Please check https://redis.io/topics/persistence for more information. appendonly no -# The name of the append only file (default: "appendonly.aof") +# The base name of the append only file. +# +# Redis 7 and newer use a set of append-only files to persist the dataset +# and changes applied to it. There are two basic types of files in use: +# +# - Base files, which are a snapshot representing the complete state of the +# dataset at the time the file was created. Base files can be either in +# the form of RDB (binary serialized) or AOF (textual commands). +# - Incremental files, which contain additional commands that were applied +# to the dataset following the previous file. +# +# In addition, manifest files are used to track the files and the order in +# which they were created and should be applied. +# +# Append-only file names are created by Redis following a specific pattern. +# The file name's prefix is based on the 'appendfilename' configuration +# parameter, followed by additional information about the sequence and type. +# +# For example, if appendfilename is set to appendonly.aof, the following file +# names could be derived: +# +# - appendonly.aof.1.base.rdb as a base file. +# - appendonly.aof.1.incr.aof, appendonly.aof.2.incr.aof as incremental files. +# - appendonly.aof.manifest as a manifest file. appendfilename "appendonly.aof" +# For convenience, Redis stores all persistent append-only files in a dedicated +# directory. The name of the directory is determined by the appenddirname +# configuration parameter. + +appenddirname "appendonlydir" + # The fsync() call tells the Operating System to actually write data on disk # instead of waiting for more data in the output buffer. Some OS will really flush # data on disk, some other OS will just try to do it ASAP. @@ -1079,7 +1450,7 @@ appendfsync everysec # BGSAVE or BGREWRITEAOF is in progress. # # This means that while another child is saving, the durability of Redis is -# the same as "appendfsync none". In practical terms, this means that it is +# the same as "appendfsync no". In practical terms, this means that it is # possible to lose up to 30 seconds of log in the worst scenario (with the # default Linux settings). # @@ -1132,34 +1503,69 @@ auto-aof-rewrite-min-size 64mb # will be found. aof-load-truncated yes -# When rewriting the AOF file, Redis is able to use an RDB preamble in the -# AOF file for faster rewrites and recoveries. When this option is turned -# on the rewritten AOF file is composed of two different stanzas: -# -# [RDB file][AOF tail] -# -# When loading Redis recognizes that the AOF file starts with the "REDIS" -# string and loads the prefixed RDB file, and continues loading the AOF -# tail. +# Redis can create append-only base files in either RDB or AOF formats. Using +# the RDB format is always faster and more efficient, and disabling it is only +# supported for backward compatibility purposes. aof-use-rdb-preamble yes -################################ LUA SCRIPTING ############################### +# Redis supports recording timestamp annotations in the AOF to support restoring +# the data from a specific point-in-time. However, using this capability changes +# the AOF format in a way that may not be compatible with existing AOF parsers. +aof-timestamp-enabled no -# Max execution time of a Lua script in milliseconds. +################################ SHUTDOWN ##################################### + +# Maximum time to wait for replicas when shutting down, in seconds. # -# If the maximum execution time is reached Redis will log that a script is -# still in execution after the maximum allowed time and will start to -# reply to queries with an error. +# During shut down, a grace period allows any lagging replicas to catch up with +# the latest replication offset before the master exists. This period can +# prevent data loss, especially for deployments without configured disk backups. # -# When a long running script exceeds the maximum execution time only the -# SCRIPT KILL and SHUTDOWN NOSAVE commands are available. The first can be -# used to stop a script that did not yet called write commands. The second -# is the only way to shut down the server in the case a write command was -# already issued by the script but the user doesn't want to wait for the natural -# termination of the script. +# The 'shutdown-timeout' value is the grace period's duration in seconds. It is +# only applicable when the instance has replicas. To disable the feature, set +# the value to 0. # -# Set it to 0 or a negative value for unlimited execution without warnings. -lua-time-limit 5000 +# shutdown-timeout 10 + +# When Redis receives a SIGINT or SIGTERM, shutdown is initiated and by default +# an RDB snapshot is written to disk in a blocking operation if save points are configured. +# The options used on signaled shutdown can include the following values: +# default: Saves RDB snapshot only if save points are configured. +# Waits for lagging replicas to catch up. +# save: Forces a DB saving operation even if no save points are configured. +# nosave: Prevents DB saving operation even if one or more save points are configured. +# now: Skips waiting for lagging replicas. +# force: Ignores any errors that would normally prevent the server from exiting. +# +# Any combination of values is allowed as long as "save" and "nosave" are not set simultaneously. +# Example: "nosave force now" +# +# shutdown-on-sigint default +# shutdown-on-sigterm default + +################ NON-DETERMINISTIC LONG BLOCKING COMMANDS ##################### + +# Maximum time in milliseconds for EVAL scripts, functions and in some cases +# modules' commands before Redis can start processing or rejecting other clients. +# +# If the maximum execution time is reached Redis will start to reply to most +# commands with a BUSY error. +# +# In this state Redis will only allow a handful of commands to be executed. +# For instance, SCRIPT KILL, FUNCTION KILL, SHUTDOWN NOSAVE and possibly some +# module specific 'allow-busy' commands. +# +# SCRIPT KILL and FUNCTION KILL will only be able to stop a script that did not +# yet call any write commands, so SHUTDOWN NOSAVE may be the only way to stop +# the server in the case a write command was already issued by the script when +# the user doesn't want to wait for the natural termination of the script. +# +# The default is 5 seconds. It is possible to set it to 0 or a negative value +# to disable this mechanism (uninterrupted execution). Note that in the past +# this config had a different name, which is now an alias, so both of these do +# the same: +# lua-time-limit 5000 +# busy-reply-threshold 5000 ################################ REDIS CLUSTER ############################### @@ -1179,10 +1585,15 @@ lua-time-limit 5000 # Cluster node timeout is the amount of milliseconds a node must be unreachable # for it to be considered in failure state. -# Most other internal time limits are multiple of the node timeout. +# Most other internal time limits are a multiple of the node timeout. # # cluster-node-timeout 15000 +# The cluster port is the port that the cluster bus will listen for inbound connections on. When set +# to the default value, 0, it will be bound to the command port + 10000. Setting this value requires +# you to specify the cluster bus port when executing cluster meet. +# cluster-port 0 + # A replica of a failing master will avoid to start a failover if its data # looks too old. # @@ -1206,18 +1617,18 @@ lua-time-limit 5000 # the failover if, since the last interaction with the master, the time # elapsed is greater than: # -# (node-timeout * replica-validity-factor) + repl-ping-replica-period +# (node-timeout * cluster-replica-validity-factor) + repl-ping-replica-period # -# So for example if node-timeout is 30 seconds, and the replica-validity-factor +# So for example if node-timeout is 30 seconds, and the cluster-replica-validity-factor # is 10, and assuming a default repl-ping-replica-period of 10 seconds, the # replica will not try to failover if it was not able to talk with the master # for longer than 310 seconds. # -# A large replica-validity-factor may allow replicas with too old data to failover +# A large cluster-replica-validity-factor may allow replicas with too old data to failover # a master, while a too small value may prevent the cluster from being able to # elect a replica at all. # -# For maximum availability, it is possible to set the replica-validity-factor +# For maximum availability, it is possible to set the cluster-replica-validity-factor # to a value of 0, which means, that replicas will always try to failover the # master regardless of the last time they interacted with the master. # (However they'll always try to apply a delay proportional to their @@ -1241,14 +1652,23 @@ lua-time-limit 5000 # master in your cluster. # # Default is 1 (replicas migrate only if their masters remain with at least -# one replica). To disable migration just set it to a very large value. +# one replica). To disable migration just set it to a very large value or +# set cluster-allow-replica-migration to 'no'. # A value of 0 can be set but is useful only for debugging and dangerous # in production. # # cluster-migration-barrier 1 +# Turning off this option allows to use less automatic cluster configuration. +# It both disables migration to orphaned masters and migration from masters +# that became empty. +# +# Default is 'yes' (allow automatic migrations). +# +# cluster-allow-replica-migration yes + # By default Redis Cluster nodes stop accepting queries if they detect there -# is at least an hash slot uncovered (no available node is serving it). +# is at least a hash slot uncovered (no available node is serving it). # This way if the cluster is partially down (for example a range of hash slots # are no longer covered) all the cluster becomes, eventually, unavailable. # It automatically returns available as soon as all the slots are covered again. @@ -1261,7 +1681,7 @@ lua-time-limit 5000 # cluster-require-full-coverage yes # This option, when set to yes, prevents replicas from trying to failover its -# master during master failures. However the master can still perform a +# master during master failures. However the replica can still perform a # manual failover, if forced to do so. # # This is useful in different scenarios, especially in the case of multiple @@ -1271,7 +1691,7 @@ lua-time-limit 5000 # cluster-replica-no-failover no # This option, when set to yes, allows nodes to serve read traffic while the -# the cluster is in a down state, as long as it believes it owns the slots. +# cluster is in a down state, as long as it believes it owns the slots. # # This is useful for two cases. The first case is for when an application # doesn't require consistency of data during node failures or network partitions. @@ -1286,8 +1706,54 @@ lua-time-limit 5000 # # cluster-allow-reads-when-down no +# This option, when set to yes, allows nodes to serve pubsub shard traffic while +# the cluster is in a down state, as long as it believes it owns the slots. +# +# This is useful if the application would like to use the pubsub feature even when +# the cluster global stable state is not OK. If the application wants to make sure only +# one shard is serving a given channel, this feature should be kept as yes. +# +# cluster-allow-pubsubshard-when-down yes + +# Cluster link send buffer limit is the limit on the memory usage of an individual +# cluster bus link's send buffer in bytes. Cluster links would be freed if they exceed +# this limit. This is to primarily prevent send buffers from growing unbounded on links +# toward slow peers (E.g. PubSub messages being piled up). +# This limit is disabled by default. Enable this limit when 'mem_cluster_links' INFO field +# and/or 'send-buffer-allocated' entries in the 'CLUSTER LINKS` command output continuously increase. +# Minimum limit of 1gb is recommended so that cluster link buffer can fit in at least a single +# PubSub message by default. (client-query-buffer-limit default value is 1gb) +# +# cluster-link-sendbuf-limit 0 + +# Clusters can configure their announced hostname using this config. This is a common use case for +# applications that need to use TLS Server Name Indication (SNI) or dealing with DNS based +# routing. By default this value is only shown as additional metadata in the CLUSTER SLOTS +# command, but can be changed using 'cluster-preferred-endpoint-type' config. This value is +# communicated along the clusterbus to all nodes, setting it to an empty string will remove +# the hostname and also propagate the removal. +# +# cluster-announce-hostname "" + +# Clusters can advertise how clients should connect to them using either their IP address, +# a user defined hostname, or by declaring they have no endpoint. Which endpoint is +# shown as the preferred endpoint is set by using the cluster-preferred-endpoint-type +# config with values 'ip', 'hostname', or 'unknown-endpoint'. This value controls how +# the endpoint returned for MOVED/ASKING requests as well as the first field of CLUSTER SLOTS. +# If the preferred endpoint type is set to hostname, but no announced hostname is set, a '?' +# will be returned instead. +# +# When a cluster advertises itself as having an unknown endpoint, it's indicating that +# the server doesn't know how clients can reach the cluster. This can happen in certain +# networking situations where there are multiple possible routes to the node, and the +# server doesn't know which one the client took. In this case, the server is expecting +# the client to reach out on the same endpoint it used for making the last request, but use +# the port provided in the response. +# +# cluster-preferred-endpoint-type ip + # In order to setup your cluster make sure to read the documentation -# available at http://redis.io web site. +# available at https://redis.io web site. ########################## CLUSTER DOCKER/NAT support ######################## @@ -1297,16 +1763,21 @@ lua-time-limit 5000 # # In order to make Redis Cluster working in such environments, a static # configuration where each node knows its public address is needed. The -# following two options are used for this scope, and are: +# following four options are used for this scope, and are: # # * cluster-announce-ip # * cluster-announce-port +# * cluster-announce-tls-port # * cluster-announce-bus-port # -# Each instruct the node about its address, client port, and cluster message -# bus port. The information is then published in the header of the bus packets -# so that other nodes will be able to correctly map the address of the node -# publishing the information. +# Each instructs the node about its address, client ports (for connections +# without and with TLS) and cluster message bus port. The information is then +# published in the header of the bus packets so that other nodes will be able to +# correctly map the address of the node publishing the information. +# +# If cluster-tls is set to yes and cluster-announce-tls-port is omitted or set +# to zero, then cluster-announce-port refers to the TLS port. Note also that +# cluster-announce-tls-port has no effect if cluster-tls is set to no. # # If the above options are not used, the normal Redis Cluster auto-detection # will be used instead. @@ -1314,12 +1785,13 @@ lua-time-limit 5000 # Note that when remapped, the bus port may not be at the fixed offset of # clients port + 10000, so you can specify any port and bus-port depending # on how they get remapped. If the bus-port is not set, a fixed offset of -# 10000 will be used as usually. +# 10000 will be used as usual. # # Example: # # cluster-announce-ip 10.1.1.5 -# cluster-announce-port 6379 +# cluster-announce-tls-port 6379 +# cluster-announce-port 0 # cluster-announce-bus-port 6380 ################################## SLOW LOG ################################### @@ -1367,10 +1839,24 @@ slowlog-max-len 128 # "CONFIG SET latency-monitor-threshold " if needed. latency-monitor-threshold 0 +################################ LATENCY TRACKING ############################## + +# The Redis extended latency monitoring tracks the per command latencies and enables +# exporting the percentile distribution via the INFO latencystats command, +# and cumulative latency distributions (histograms) via the LATENCY command. +# +# By default, the extended latency monitoring is enabled since the overhead +# of keeping track of the command latency is very small. +# latency-tracking yes + +# By default the exported latency percentiles via the INFO latencystats command +# are the p50, p99, and p999. +# latency-tracking-info-percentiles 50 99 99.9 + ############################# EVENT NOTIFICATION ############################## # Redis can notify Pub/Sub clients about events happening in the key space. -# This feature is documented at http://redis.io/topics/notifications +# This feature is documented at https://redis.io/topics/notifications # # For instance if keyspace events notification is enabled, and a client # performs a DEL operation on key "foo" stored in the Database 0, two @@ -1392,9 +1878,11 @@ latency-monitor-threshold 0 # z Sorted set commands # x Expired events (events generated every time a key expires) # e Evicted events (events generated when a key is evicted for maxmemory) +# n New key events (Note: not included in the 'A' class) # t Stream commands +# d Module key type events # m Key-miss events (Note: It is not included in the 'A' class) -# A Alias for g$lshzxet, so that the "AKE" string means all the events +# A Alias for g$lshzxetd, so that the "AKE" string means all the events # (Except key-miss events which are excluded from 'A' due to their # unique nature). # @@ -1417,68 +1905,13 @@ latency-monitor-threshold 0 # specify at least one of K or E, no events will be delivered. notify-keyspace-events "" -############################### GOPHER SERVER ################################# - -# Redis contains an implementation of the Gopher protocol, as specified in -# the RFC 1436 (https://www.ietf.org/rfc/rfc1436.txt). -# -# The Gopher protocol was very popular in the late '90s. It is an alternative -# to the web, and the implementation both server and client side is so simple -# that the Redis server has just 100 lines of code in order to implement this -# support. -# -# What do you do with Gopher nowadays? Well Gopher never *really* died, and -# lately there is a movement in order for the Gopher more hierarchical content -# composed of just plain text documents to be resurrected. Some want a simpler -# internet, others believe that the mainstream internet became too much -# controlled, and it's cool to create an alternative space for people that -# want a bit of fresh air. -# -# Anyway for the 10nth birthday of the Redis, we gave it the Gopher protocol -# as a gift. -# -# --- HOW IT WORKS? --- -# -# The Redis Gopher support uses the inline protocol of Redis, and specifically -# two kind of inline requests that were anyway illegal: an empty request -# or any request that starts with "/" (there are no Redis commands starting -# with such a slash). Normal RESP2/RESP3 requests are completely out of the -# path of the Gopher protocol implementation and are served as usually as well. -# -# If you open a connection to Redis when Gopher is enabled and send it -# a string like "/foo", if there is a key named "/foo" it is served via the -# Gopher protocol. -# -# In order to create a real Gopher "hole" (the name of a Gopher site in Gopher -# talking), you likely need a script like the following: -# -# https://github.com/antirez/gopher2redis -# -# --- SECURITY WARNING --- -# -# If you plan to put Redis on the internet in a publicly accessible address -# to server Gopher pages MAKE SURE TO SET A PASSWORD to the instance. -# Once a password is set: -# -# 1. The Gopher server (when enabled, not by default) will still serve -# content via Gopher. -# 2. However other commands cannot be called before the client will -# authenticate. -# -# So use the 'requirepass' option to protect your instance. -# -# To enable Gopher support uncomment the following line and set -# the option from no (the default) to yes. -# -# gopher-enabled no - ############################### ADVANCED CONFIG ############################### # Hashes are encoded using a memory efficient data structure when they have a # small number of entries, and the biggest entry does not exceed a given # threshold. These thresholds can be configured using the following directives. -hash-max-ziplist-entries 512 -hash-max-ziplist-value 64 +hash-max-listpack-entries 512 +hash-max-listpack-value 64 # Lists are also encoded in a special way to save a lot of space. # The number of entries allowed per internal list node can be specified @@ -1493,7 +1926,7 @@ hash-max-ziplist-value 64 # per list node. # The highest performing option is usually -2 (8 Kb size) or -1 (4 Kb size), # but if your use case is unique, adjust the settings as necessary. -list-max-ziplist-size -2 +list-max-listpack-size -2 # Lists may also be compressed. # Compress depth is the number of quicklist ziplist nodes from *each* side of @@ -1521,8 +1954,8 @@ set-max-intset-entries 512 # Similarly to hashes and lists, sorted sets are also specially encoded in # order to save a lot of space. This encoding is only used when the length and # elements of a sorted set are below the following limits: -zset-max-ziplist-entries 128 -zset-max-ziplist-value 64 +zset-max-listpack-entries 128 +zset-max-listpack-value 64 # HyperLogLog sparse representation bytes limit. The limit includes the # 16 bytes header. When an HyperLogLog using the sparse representation crosses @@ -1544,7 +1977,7 @@ hll-sparse-max-bytes 3000 # maximum number of items it may contain before switching to a new node when # appending new stream entries. If any of the following settings are set to # zero, the limit is ignored, so for instance it is possible to set just a -# max entires limit by setting max-bytes to 0 and max-entries to the desired +# max entries limit by setting max-bytes to 0 and max-entries to the desired # value. stream-node-max-bytes 4096 stream-node-max-entries 100 @@ -1577,7 +2010,7 @@ activerehashing yes # The limit can be set differently for the three different classes of clients: # # normal -> normal clients including MONITOR clients -# replica -> replica clients +# replica -> replica clients # pubsub -> clients subscribed to at least one pubsub channel or pattern # # The syntax of every client-output-buffer-limit directive is the following: @@ -1601,6 +2034,13 @@ activerehashing yes # Instead there is a default limit for pubsub and replica clients, since # subscribers and replicas receive data in a push fashion. # +# Note that it doesn't make sense to set the replica clients output buffer +# limit lower than the repl-backlog-size config (partial sync will succeed +# and then replica will get disconnected). +# Such a configuration is ignored (the size of repl-backlog-size will be used). +# This doesn't have memory consumption implications since the replica client +# will share the backlog buffers memory. +# # Both the hard or the soft limit can be disabled by setting them to zero. client-output-buffer-limit normal 0 0 0 client-output-buffer-limit replica 256mb 64mb 60 @@ -1614,9 +2054,28 @@ client-output-buffer-limit pubsub 32mb 8mb 60 # # client-query-buffer-limit 1gb +# In some scenarios client connections can hog up memory leading to OOM +# errors or data eviction. To avoid this we can cap the accumulated memory +# used by all client connections (all pubsub and normal clients). Once we +# reach that limit connections will be dropped by the server freeing up +# memory. The server will attempt to drop the connections using the most +# memory first. We call this mechanism "client eviction". +# +# Client eviction is configured using the maxmemory-clients setting as follows: +# 0 - client eviction is disabled (default) +# +# A memory value can be used for the client eviction threshold, +# for example: +# maxmemory-clients 1g +# +# A percentage value (between 1% and 100%) means the client eviction threshold +# is based on a percentage of the maxmemory setting. For example to set client +# eviction at 5% of maxmemory: +# maxmemory-clients 5% + # In the Redis protocol, bulk requests, that are, elements representing single -# strings, are normally limited ot 512 mb. However you can change this limit -# here. +# strings, are normally limited to 512 mb. However you can change this limit +# here, but must be 1mb or greater # # proto-max-bulk-len 512mb @@ -1644,7 +2103,7 @@ hz 10 # # Since the default HZ value by default is conservatively set to 10, Redis # offers, and enables by default, the ability to use an adaptive HZ value -# which will temporary raise when there are many connected clients. +# which will temporarily raise when there are many connected clients. # # When dynamic HZ is enabled, the actual configured HZ will be used # as a baseline, but multiples of the configured HZ value will be actually @@ -1654,13 +2113,13 @@ hz 10 dynamic-hz yes # When a child rewrites the AOF file, if the following option is enabled -# the file will be fsync-ed every 32 MB of data generated. This is useful +# the file will be fsync-ed every 4 MB of data generated. This is useful # in order to commit the file to the disk more incrementally and avoid # big latency spikes. aof-rewrite-incremental-fsync yes # When redis saves RDB file, if the following option is enabled -# the file will be fsync-ed every 32 MB of data generated. This is useful +# the file will be fsync-ed every 4 MB of data generated. This is useful # in order to commit the file to the disk more incrementally and avoid # big latency spikes. rdb-save-incremental-fsync yes @@ -1711,7 +2170,7 @@ rdb-save-incremental-fsync yes # for the key counter to be divided by two (or decremented if it has a value # less <= 10). # -# The default value for the lfu-decay-time is 1. A Special value of 0 means to +# The default value for the lfu-decay-time is 1. A special value of 0 means to # decay the counter every time it happens to be scanned. # # lfu-log-factor 10 @@ -1731,7 +2190,7 @@ rdb-save-incremental-fsync yes # restart is needed in order to lower the fragmentation, or at least to flush # away all the data and create it again. However thanks to this feature # implemented by Oran Agra for Redis 4.0 this process can happen at runtime -# in an "hot" way, while the server is running. +# in a "hot" way, while the server is running. # # Basically when the fragmentation is over a certain level (see the # configuration options below) Redis will start to create new copies of the @@ -1757,7 +2216,7 @@ rdb-save-incremental-fsync yes # defragmentation process. If you are not sure about what they mean it is # a good idea to leave the defaults untouched. -# Enabled active defragmentation +# Active defragmentation is disabled by default # activedefrag no # Minimum amount of fragmentation waste to start active defrag @@ -1808,3 +2267,10 @@ jemalloc-bg-thread yes # # Set bgsave child process to cpu affinity 1,10,11 # bgsave_cpulist 1,10-11 + +# In some cases redis will emit warnings and even refuse to start if it detects +# that the system is in bad state, it is possible to suppress these warnings +# by setting the following config which takes a space delimited list of warnings +# to suppress +# +# ignore-warnings ARM64-COW-BUG