D4 Project

Open and collaborative network monitoring

Team CIRCL
https://www.d4-project.org/

2019/05/21

Jean-Louis Huynen

PROBLEM STATEMENT

- CSIRTs (or private organisations) build their own honeypot, honeynet or blackhole monitoring network
- Designing, managing and operating such infrastructure is a tedious and resource intensive task
- Automatic sharing between monitoring networks from different organisations is missing
- Sensors and processing are often seen as blackbox or difficult to audit

OBJECTIVE

- Based on our experience with MISP¹ where sharing played an important role, we transpose the model in D4 project
- Keeping the protocol and code base simple and minimal
- Allowing every organisation to control and audit their own sensor network
- Extending D4 or encapsulating legacy monitoring protocols must be as simple as possible
- Ensuring that the sensor server has no control on the sensor (unidirectional streaming)
- Don't force users to use dedicated sensors and allow flexibility of sensor support (software, hardware, virtual)

¹https://github.com/MISP/MISP

(SHORT) HISTORY

- D4 Project (co-funded under INEA CEF EU program) started -1st November 2018
- D4 encapsulation protocol version 1 published 1st December 2018
- vo.1 release of the D4 core² including a server and simple D4
 C client 21st January 2019
- First version of a golang D4 client³ running on ARM, MIPS, PPC and x86 14th February 2019

²https://www.github.com/D4-project/d4-core

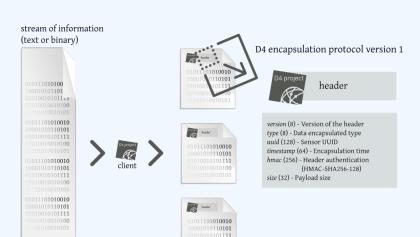
³https://www.github.com/D4-project/d4-goclient/

(SHORT) HISTORY

Release	Date
analyzer-d4-passivedns-vo.1	Apr. 5, 2019
analyzer-d4-passivessl-0.1	Apr. 25, 2019
analyzer-d4-pibs-vo.1	Apr. 8, 2019
BGP-Ranking-1.0	Apr. 25, 2019
d4-core-vo.1	Jan. 25, 2019
d4-core-vo.2	Feb. 14, 2019
d4-core-vo.3	Apr. 8, 2019
d4-goclient-vo.1	Feb. 14, 2019
d4-goclient-vo.2	Apr. 8, 2019
d4-server-packer-0.1	Apr. 25, 2019
IPASN-History-1.0	Apr. 25, 2019
sensor-d4-tls-fingerprinting-0.1	Apr. 25, 2019

see https://github.com/D4-Project

D4 OVERVIEW



ROADMAP - OUTPUT

CIRCL will host a server instance for organisations willing to contribute to a public dataset without running their own D4 server:

- ✓ Passive SSL
- ✓ Passive DNS
- √ Blackhole DDoS
 - BGP mapping
- egress filtering mapping
- Radio monitoring
- ...

D4 ENCAPSULATION PROTOCOL

D4 HEADER

Name	bit size	Description
version	uint 8	Version of the header
type	uint 8	Data encapsulated type
uuid	uint 128	Sensor UUID
timestamp	uint 64	Encapsulation time
hmac	uint 256	Authentication header (HMAC-SHA-256-128)
size	uint 32	Payload size

D4 HEADER

Туре	Description
0	Reserved
1	pcap (libpcap 2.4)
2	meta header (JSON)
3	generic log line
4	dnscap output
5	pcapng (diagnostic)
6	generic NDJSON or JSON Lines
7	generic YAF (Yet Another Flowmeter)
8	passivedns CSV stream
254	type defined by meta header (type 2)

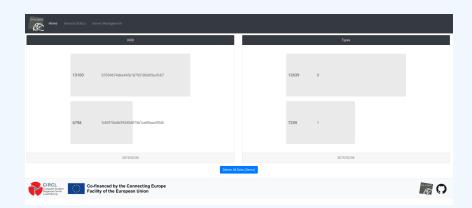
D4 META HEADER

D4 header includes an easy way to **extend the protocol** (via type 2) without altering the format. Within a D4 session, the initial D4 packet(s) type 2 defines the custom headers and then the following packets with type 254 is the custom data encapsulated.

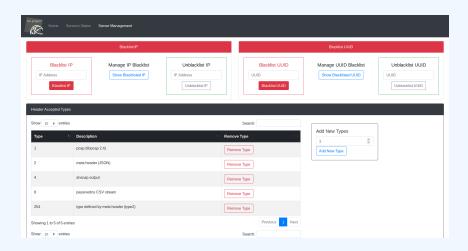
```
"type": "ja3-jl",
    "encoding": "utf-8",
    "tags": [
        "tlp:white"
],
    "misp:org": "5b642239-4db4-4580-adf4-4ebd950d210f"
}
```

D4 SERVER

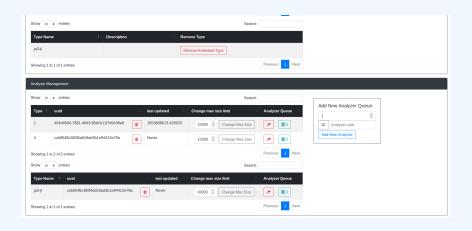
- D4 core server⁴ is a complete server to handle clients (sensors) including the decapsulation of the D4 protocol, control of sensor registrations, management of decoding protocols and dispatching to adequate decoders/analysers.
- D4 server is written in Python 3.6 and runs on standard GNU/Linux distribution.

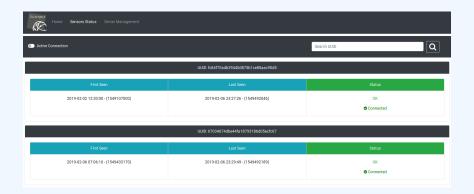

⁴https://github.com/D4-project/d4-core

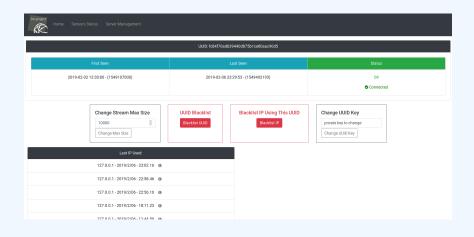
D4 SERVER - MANAGEMENT INTERFACE

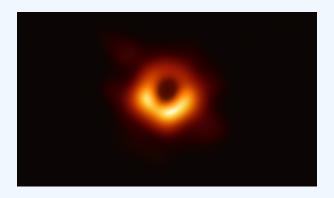

The D4 server provides a web interface to manage D4 sensors, sessions and analyzer.

- Get Sensors status, errors and statistics
- Get all connected sensors
- Manage Sensors (stream size limit, secret key, ...)
- Manage Accepted types
- UUID/IP blocklist
- Create Analyzer Queues

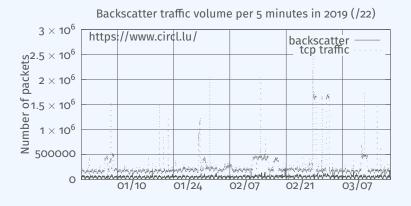

D4 SERVER - MAIN INTERFACE


D4 SERVER - SERVER MANAGEMENT


D4 SERVER - SERVER MANAGEMENT


D4 SERVER - SENSOR OVERVIEW

D4 SERVER - SENSOR MANAGEMENT



A distributed Network telescope to observe DDoS attacks

MOTIVATION

DDoS Attacks produce an observable side-effect:

date (month / day)

WHAT CAN BE DERIVED FROM BACKSCATTER TRAFFIC?

- External point of view on ongoing denial of service attacks
- Confirm if there is a DDOS attack
- Recover time line of attacked targets
- Confirm which services (DNS, webserver, . . .)
- Infrastructure changes
- Assess the state of an infrastructure under denial of service attack
 - Detect failure/addition of intermediate network equipments, firewalls, proxy servers etc
 - Detect DDoS mitigation devices
- Create probabilistic models of denial of service attacks

D4 IN THIS SETTING

Aggregating backscatter traffic collected from D4 sensors:

- have various points of observation (non contiguous address space)
- perform analysis on bigger amount of data

D4 lookup should provide:

- backscatter analysis results,
- daily updates,
- additional relevant information (DNS, BGP, etc.).

Passive DNS

PROBLEM STATEMENT

- CIRCL (and other CSIRTs) have their own passive DNS⁵ collection mechanisms
- Current collection models are affected with DoH⁶ and centralised DNS services
- DNS answers collection is a tedious process
- Sharing Passive DNS stream between organisation is challenging due to privacy

⁵https://www.circl.lu/services/passive-dns/

⁶DNS over HTTPS

POTENTIAL STRATEGY

- Improve Passive DNS collection diversity by being closer to the source and limit impact of DoH (e.g. at the OS resolver level)
- Increasing diversity and mixing models before sharing/storing Passive DNS records
- Simplify process and tools to install for Passive DNS collection by relying on D4 sensors instead of custom mechanisms
- Provide a distributed infrastructure for mixing streams and filtering out the sharing to the validated partners

FIRST RELEASE

- analyzer-d4-passivedns⁷ is an analyzer for a D4 network sensor. The analyser can process data produced by D4 sensors (in passivedns CSV format⁸)
- Ingest these into a Passive DNS server which can be queried later to search for the Passive DNS records
- The lookup server (using on redis-compatible backend) is a Passive DNS REST server compliant to the Common Output Format⁹

⁷https://github.com/D4-project/analyzer-d4-passivedns

⁸https://github.com/gamelinux/passivedns

⁹https://tools.ietf.org/html/

draft-dulaunoy-dnsop-passive-dns-cof-04

Passive SSL revamping

A PASSIVE SSL FINGERPRINTER

CSIRT's rationale for collecting TLS handshakes:

- pivot on additional data points,
- find owners of IP addresses,
- detect usage of CIDR blocks,
- detect vulnerable systems,
- detect compromised services,
- detect Key material reuse,
- detect weak keys.

OBJECTIVES

History of links between:

- x509 certificates,
- ports,
- IP address,
- client (ja3),
- server (ja3s),

"JA3 is a method for creating SSL/TLS client fingerprints that should be easy to produce on any platform and can be easily shared for threat intelligence." 10

¹⁰ https://github.com/salesforce/ja3

OBJECTIVES

Mind your Ps and Qs:

- Public keys type and size,
- modulos and exponents,
- curves parameters.

FIRST RELEASE

- ✓ sensor-d4-tls-fingerprinting ¹¹: Extracts and fingerprints certificates
- √ analyzer-d4-passivessl ¹²: Stores Certificates / PK details in a PostgreSQL DB
- lookup-d4-passivessl ¹³: Exposes the DB through a public REST API

¹¹github.com/D4-project/sensor-d4-tls-fingerprinting

¹²github.com/D4-project/analyzer-d4-passivessl

¹³github.com/D4-project/lookup-d4-passivessl

FUTURE

- Mixing models for passive collection streams (for privacy) in next version of D4 core server
- Interconnecting private D4 sensor networks with other D4 sensor networks (sharing to partners filtered stream)
- Previewing dataset collected in D4 sensor network and providing open data stream (if contributor agrees to share under specific conditions)

GET IN TOUCH IF YOU WANT TO JOIN THE PROJECT, HOST A SENSOR OR CONTRIBUTE

- Collaboration can include research partnership, sharing of collected streams or improving the software.
- Contact: info@circl.lu
- https://github.com/D4-Projecthttps://twitter.com/d4_project