Snake Oil Crypto:

How | stopped to worry and started to love crypto

Team CIRCL D4 prOjeCt

2019/12/06

Jean-Louis Huynen



OUTLINE

m Use-Case: RSA,

m First Hands-on: Understanding RSA,

m Snake-OQil-Crypto: a primer,

m Second Hands-on: RSA in Snake-Oil-Crypto,
m D4 passiveSSL Collection,

m Interactions with MISP.




Understanding RSA



RSA BAsICS

Ron Rivest, Adi Shamir, and Leonard Adleman in 1977:
m asymmetric crypto system,
B can encrypt and sign,
® messages are big numbers,
m encryption is basically multiplication of big numbers,

m creates a trapdoor permutation: turning x in y is easy, but
finding x from y is hard.




RSA - USE WITH OPENSSL

m Hands-on:

~/hands—on/UsingRSA

m Decrypt message.bin

m generate a new private key,

m generate the corresponding public key,
m use this new key to encrypt a message,
m use this new key to decrypt a message.



RSA “BY HAND"

run: sage rsa.sage at the folder’s root:

PlainText is: 1234567890

p = random_prime(2”°32) = 2312340619

q = random_prime(2”32) = 2031410981

n = p*q = 4697314125248937239

phi = (p—1)*(q—1) = 4697314120905185640

e = random_prime(phi) = 2588085603940229747
d = xgcd(e,phi)[1] = —2102894211931680277
Does d*e == 1?

mod(d*e, phi) = 1

CipherText y = power_mod(x, e, n) = 1454606910711062745
Decrypted CT is: 1234567890



WITH ONLY ONE KEY

Several potential weaknesses:

m Key size too small: keys up to 1024 bits are breakable given
the right means,

m close p and q,

m unsafe primes, smooth primes,

m broken primes (FactorDB, Debian OpenSSL bug).
m signing with RSA-CRT (instead of RSA-PSS)




WITH A SET OF KEYS

Several potential weaknesses:
m share moduli: if n1=n2 then the keys share p and q,
m share p or q,

In both case, it is trivial to recover the private keys.




BREAKING SMALL KEYS'

= Hands-on:

~/hands—on/SmallKey

what is the key size of smallkey?
what is n?

what is the public exponent?
what is n in base10?

what are p and q?

Let's generate the private key: using p, then using q.

"https://www.sjoerdlangkemper.nl/2019/06/19/attacking-rsa/

8]



CLOSE PRIME FACTORS

= Hands-on:

~/hands—on/ClosePQ

m use Fermat Algorithm? to find both p and q:

def fermatfactor(N):
if N <= o: return [N]
if is_even(N): return [2,N/2]
a = ceil(sqrt(N))
while not is_square(a™2—N):
a=a+1
b = sqrt(a”2—N)
return [a — b,a + b]

*http://facthacks.cr.yp.to/fermat.html



http://facthacks.cr.yp.to/fermat.html

SHARED PRIME FACTORS

Researchers have shown that several devices generated their
keypairs at boot time without enough entropy3:

prng.seed(seed)

p = prng.generate_random_prime ()
/] prng.add_entropy ()

q = prng.generate_random_prime ()
n p*q

Given n=pqg and n’ = pq’ it is trivial to recover the shared p by
computing their Greatest Common Divisor (GCD), and therefore
both private keys*.

“They cracked cracked about 13000 of them”

3Bernstein, Heninger, and Lange: http://facthacks.cr.yp.to/
“http://www.loyalty.org/~schoen/rsa/



http://facthacks.cr.yp.to/
http://www.loyalty.org/~schoen/rsa/

SHARED PRIME FACTORS

= Hands-on:

~/hands—on/SharedPrimeFactor

m Read README.txt, you have a challenge to solve :

» the answers folder should be left alone for now,

> scripts contains scripts that may be useful to solve the
challenge,

> attempts may hold your attempt are generating private keys.

> bgcd-bd.sage contains Daniel J. Berstein's algorithm for
computing RSA collisions in batches.




Hands-on: Exploiting Weaknesses in RSA
- at bigger scale -




SNAKE OIL CRYPTO - PROBLEM STATEMENT

We reckon that 10T devices are often the weakest devices on a
network:

m Usually the result of cheap engineering,
m sloppy patching cycles,

m sometimes forgotten-not monitored (remember the printer
sending sysmon?),

m few hardening features enabled.

We feel a bit safer when they use TLS, but we what you now
know about RSA, should we?

Shttps://github.com/ds4-project/snake-oil-crypto



https://github.com/d4-project/snake-oil-crypto

SNAKE OIL CRYPTO - GCD

In Snake-0il-Crypto we compute GCD® between:
m between certificates having the same issuer,
m between certificates having the same subject,

m on keys collected from various sources (PassiveSSL,
Certificate Transparency, shodan, censys, etc.),

m python + redis + postgresql’

“Check all the keys that we know of for vendor X"

®using Bernstein’s Batch GCD algorithm
"https://github.com/D4-project/snake-oil-crypto/



https://github.com/D4-project/snake-oil-crypto/

SNAKE OIL CRYPTO - GCD

Quick Demo:
m Let's check how strong are the RSA keys in our database...
m check some results on https://misp-eurolea.enforce.lan
m how bad can it be?

m do you find some vendors we should notify?




SNAKE OIL CRYPTO - MISP FEED

event: (2507, Snaker)
event: (207675 St

Type: attribute

itput 2.
ally OutpLE 2.

jyioytput 2

5y output 2.
even€ (338

0y i output 2.
i g B

event: (4833) Snake.OULC

‘et daond

e
Wm&“bmly outpit2
enE it put 2.
D L
Batiyudput 2...
evenbU2RBIHIDaKS: Daily output 2.
e\?em:‘t@ o -| aily output
attribute: 1024936 H5576710368% g
S 7
i : o
e t
v o Y
s RSN

£

B
T SHRBBIS iR bhpc 2 attribute: RS
0% =
571 £5B1b70107536192205135825:
B s o g, SV 407D S
event mmﬂ% ; A " By, output 2
i f 0 w&vn‘wﬂm
L W\mﬂ
£ iy AR oo 2
) vt Dajly output2
‘avent: (Aug\grﬁm i b rody. Dathuodtput 2
oDy et 2
vent: (QUERY 4132
event: lziit?é/m .

Isvadally outhut 2.

P

event: (2300 F¥REkel PR

Bally output 2

iy 2
iy oot 3
it 3



SNAKE OIL CRYPTO - MISP FEED

The MISP feed:

m Allows for checking automatic checking by an IDS on hashed
values,

m contains thousands on broken keys from a dozen of vendors,
m will be accessible upon request (info@circl.lu).
In the future:

m Automatic the vendor checks by performing TF-IDF on x509’s
subjects,

m automatic vendors notification.




D4 - TLS FINGERPRINTING

= Hands-on:

~/hands—on/TLSinspection

open stripped.pcap

what is the admin password?
bummer, it's encrypted,
what is the admin password?

D4 - full chain demo.




FIRST RELEASE

v sensor-d4-tls-fingerprinting 8: Extracts and fingerprints
certificates, and computes TLSH fuzzy hash.

v analyzer-d4-passivessl ?: Stores Certificates / PK details in a
PostgreSQL DB.

m snake-oil-crypto "°: Performs crypto checks, push results in
MISP for notification

m lookup-ds4-passivessl ': Exposes the DB through a public
REST API.

8github.com/Ds-project/sensor-ds-tls-fingerprinting
°github.com/Ds-project/analyzer-ds4-passivessl
©github.com/D4-project/snake-oil-crypto
"github.com/Ds4-project/lookup-ds-passivessl



github.com/D4-project/sensor-d4-tls-fingerprinting
github.com/D4-project/analyzer-d4-passivessl
github.com/D4-project/snake-oil-crypto
github.com/D4-project/lookup-d4-passivessl

GET IN TOUCH IF YOU WANT TO JOIN/SUPPORT THE

PROJECT, HOST A PASSIVE SSL SENSOR OR CONTRIBUTE

m Collaboration can include research partnership, sharing of
collected streams or improving the software.

m Contact: info@circl.lu

m https://github.com/Ds4-Project -
https://twitter.com/d4_project

20/ 20


https://github.com/D4-Project
https://twitter.com/d4_project

