
Snake Oil Crypto:
How I stopped to worry and started to love crypto

D4 projectTeam CIRCL

2019/12/06

Jean-Louis Huynen

Outline

Use-Case: RSA,
First Hands-on: Understanding RSA,
Snake-Oil-Crypto: a primer,
Second Hands-on: RSA in Snake-Oil-Crypto,
D4 passiveSSL Collection,
Interactions with MISP.

1 20

Understanding RSA

2 20

RSA Basics

Ron Rivest, Adi Shamir, and Leonard Adleman in 1977:
asymmetric crypto system,
can encrypt and sign,
messages are big numbers,
encryption is basically multiplication of big numbers,
creates a trapdoor permutation: turning x in y is easy, but
finding x from y is hard.

3 20

RSA - Use with openssl

Hands-on:

~/hands−on/UsingRSA

Decrypt message.bin
generate a new private key,
generate the corresponding public key,
use this new key to encrypt a message,
use this new key to decrypt a message.

4 20

RSA “by hand”

run: sage rsa.sage at the folder’s root:
Pla inText i s : 1234567890
p = random_prime (2^32) = 2312340619
q = random_prime (2^32) = 2031410981
n = p*q = 4697314125248937239
phi = (p−1)*(q−1) = 4697314120905185640
e = random_prime (phi) = 2588085603940229747
d = xgcd (e , phi) [1] = −2102894211931680277
Does d*e == 1?
mod(d*e , phi) = 1
CipherText y = power_mod(x , e , n) = 1454606910711062745
Decrypted CT i s : 1234567890

5 20

With only one key

Several potential weaknesses:
Key size too small: keys up to 1024 bits are breakable given
the right means,
close p and q,
unsafe primes, smooth primes,
broken primes (FactorDB, Debian OpenSSL bug).
signing with RSA-CRT (instead of RSA-PSS)

6 20

With a set of keys

Several potential weaknesses:
share moduli: if n1 = n2 then the keys share p and q,
share p or q,

In both case, it is trivial to recover the private keys.

7 20

Breaking small keys1

Hands-on:

~/hands−on/SmallKey

what is the key size of smallkey?
what is n?
what is the public exponent?
what is n in base10?
what are p and q?

Let’s generate the private key: using p, then using q.

1https://www.sjoerdlangkemper.nl/2019/06/19/attacking-rsa/
8 20

Close Prime Factors

Hands-on:

~/hands−on/ClosePQ

use Fermat Algorithm2 to find both p and q:

def fermatfactor (N) :
i f N <= 0: return [N]
i f is_even (N) : return [2 ,N/2]
a = c e i l (sqrt (N))
while not is_square (a^2−N) :
a = a + 1

b = sqrt (a^2−N)
return [a − b , a + b]

2http://facthacks.cr.yp.to/fermat.html
9 20

http://facthacks.cr.yp.to/fermat.html

Shared prime factors

Researchers have shown that several devices generated their
keypairs at boot time without enough entropy3:

prng . seed (seed)
p = prng . generate_random_prime ()
// prng . add_entropy ()
q = prng . generate_random_prime ()
n = p*q

Given n=pq and n’ = pq’ it is trivial to recover the shared p by
computing their Greatest Common Divisor (GCD), and therefore
both private keys4.

“They cracked cracked about 13000 of them”

3Bernstein, Heninger, and Lange: http://facthacks.cr.yp.to/
4http://www.loyalty.org/~schoen/rsa/

10 20

http://facthacks.cr.yp.to/
http://www.loyalty.org/~schoen/rsa/

Shared prime factors

Hands-on:

~/hands−on/SharedPrimeFactor

Read README.txt, you have a challenge to solve :
▶ the answers folder should be left alone for now,
▶ scripts contains scripts that may be useful to solve the
challenge,

▶ attempts may hold your attempt are generating private keys.
▶ bgcd-bd.sage contains Daniel J. Berstein’s algorithm for
computing RSA collisions in batches.

11 20

Hands-on: Exploiting Weaknesses in RSA
– at bigger scale –

12 20

Snake Oil Crypto5 - Problem Statement

We reckon that IoT devices are often the weakest devices on a
network:

Usually the result of cheap engineering,
sloppy patching cycles,
sometimes forgotten–not monitored (remember the printer
sending sysmon?),
few hardening features enabled.

We feel a bit safer when they use TLS, but we what you now
know about RSA, should we?

5https://github.com/d4-project/snake-oil-crypto
13 20

https://github.com/d4-project/snake-oil-crypto

Snake Oil Crypto - GCD

In Snake-Oil-Crypto we compute GCD6 between:
between certificates having the same issuer,
between certificates having the same subject,
on keys collected from various sources (PassiveSSL,
Certificate Transparency, shodan, censys, etc.),
python + redis + postgresql 7

“Check all the keys that we know of for vendor X”

6using Bernstein’s Batch GCD algorithm
7https://github.com/D4-project/snake-oil-crypto/

14 20

https://github.com/D4-project/snake-oil-crypto/

Snake Oil Crypto - GCD

Quick Demo:
Let’s check how strong are the RSA keys in our database...
check some results on https://misp-eurolea.enforce.lan
how bad can it be?
do you find some vendors we should notify?

15 20

Snake Oil Crypto - MISP feed

16 20

Snake Oil Crypto - MISP feed

The MISP feed:
Allows for checking automatic checking by an IDS on hashed
values,
contains thousands on broken keys from a dozen of vendors,
will be accessible upon request (info@circl.lu).

In the future:
Automatic the vendor checks by performing TF-IDF on x509’s
subjects,
automatic vendors notification.

17 20

D4 - TLS Fingerprinting

Hands-on:

~/hands−on/TLSinspection

open stripped.pcap
what is the admin password?
bummer, it’s encrypted,
what is the admin password?

D4 - full chain demo.

18 20

First release

✓ sensor-d4-tls-fingerprinting 8: Extracts and fingerprints
certificates, and computes TLSH fuzzy hash.

✓ analyzer-d4-passivessl 9: Stores Certificates / PK details in a
PostgreSQL DB.
snake-oil-crypto 10: Performs crypto checks, push results in
MISP for notification
lookup-d4-passivessl 11: Exposes the DB through a public
REST API.

8github.com/D4-project/sensor-d4-tls-fingerprinting
9github.com/D4-project/analyzer-d4-passivessl
10github.com/D4-project/snake-oil-crypto
11github.com/D4-project/lookup-d4-passivessl

19 20

github.com/D4-project/sensor-d4-tls-fingerprinting
github.com/D4-project/analyzer-d4-passivessl
github.com/D4-project/snake-oil-crypto
github.com/D4-project/lookup-d4-passivessl

Get in touch if you want to join/support the
project, host a passive ssl sensor or contribute

Collaboration can include research partnership, sharing of
collected streams or improving the software.
Contact: info@circl.lu
https://github.com/D4-Project -
https://twitter.com/d4_project

20 / 20

https://github.com/D4-Project
https://twitter.com/d4_project

