D4 Project

Open and collaborative network monitoring

https://www.d4-project.org/

2019/09/23

Team CIRCL

PROBLEM STATEMENT

- CSIRTs (or private organisations) build their own honeypot, honeynet or blackhole monitoring network
- Designing, managing and operating such infrastructure is a tedious and resource intensive task
- Automatic sharing between monitoring networks from different organisations is missing
- Sensors and processing are often seen as blackbox or difficult to audit

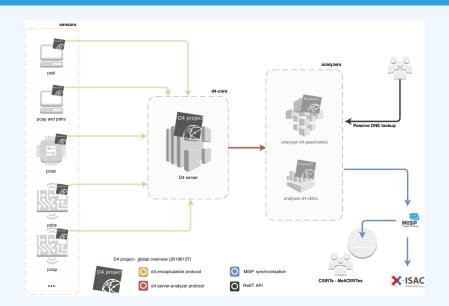
OBJECTIVE

- Based on our experience with MISP¹ where sharing played an important role, we transpose the model in D4 project
- Keeping the protocol and code base simple and minimal
- Allowing every organisation to control and audit their own sensor network
- Extending D4 or encapsulating legacy monitoring protocols must be as simple as possible
- Ensuring that the sensor server has no control on the sensor (unidirectional streaming)
- Don't force users to use dedicated sensors and allow flexibility of sensor support (software, hardware, virtual)

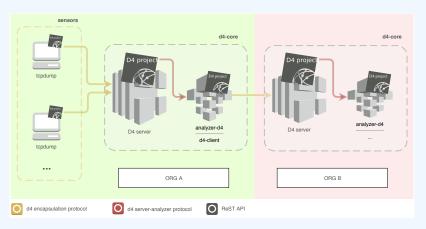
https://github.com/MISP/MISP

(SHORT) HISTORY

- D4 Project (co-funded under INEA CEF EU program) started -1st November 2018
- D4 encapsulation protocol version 1 published 1st
 December 2018
- vo.1 release of the D4 core² including a server and simple D4
 C client 21st January 2019
- First version of a golang D4 client³ running on ARM, MIPS, PPC and x86 **January 2019**
- First Analyzers **Spring 2019**
- Client Generator Summer 2019


²https://www.github.com/D4-project/d4-core
3https://www.github.com/D4-project/d4-goclient/

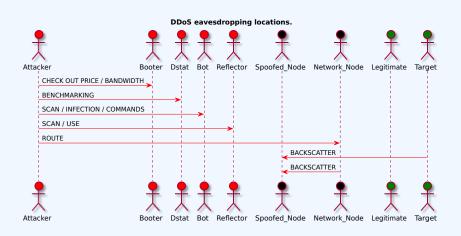
(SHORT) HISTORY


Release	Date
AIL-framework-v1.5	Apr. 26, 2019
•••	
AIL-framework-v2.1	Aug. 14, 2019
analyzer-d4-balboa-v0.1	Aug. 19, 2019
analyzer-d4-passivedns-v0.1	Apr. 5, 2019
analyzer-d4-passivessl-0.1	Apr. 25, 2019
analyzer-d4-pibs-v0.1	Apr. 8, 2019
BGP-Ranking-1.0	Apr. 25, 2019
BGP-Ranking-1.1	Aug. 19, 2019
d4-core-vo.1	Jan. 25, 2019
d4-core-vo.2	Feb. 14, 2019
d4-core-vo.3	Apr. 8, 2019
d4-goclient-vo.1	Feb. 14, 2019
d4-goclient-vo.2	Apr. 8, 2019
d4-sensor-generator-vo.1	Aug. 22, 2019
d4-server-packer-0.1	Apr. 25, 2019
IPASN-History-1.0	Apr. 25, 2019
IPASN-History-1.1	Aug. 19, 2019
sensor-d4-tls-fingerprinting-0.1	Apr. 25, 2019

see https://github.com/D4-Project

D4 OVERVIEW

D4 OVERVIEW - CONNECTING SENSOR NETWORKS



https://d4-project.org/2019/06/17/sharing-between-D4-sensors.html

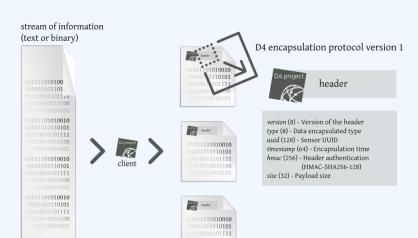
WHAT TO DO WITH IT

- Passive DNS collection
- Passive SSL collection
- AIL collection
- Correlations, CTI
- DDoS Detection

D4 OVERVIEW: DDOS

https://d4-project.org/2019/08/29/state-of-the-art-DDoS.html

ROADMAP - OUTPUT


CIRCL hosts a server instance for organisations willing to contribute to a public dataset without running their own D4 server:

- √ Blackhole DDoS
- ✓ Passive DNS
- ✓ Passive SSL
- Gene⁴ / WHIDS⁵ (sysmon)
- BGP mapping
- egress filtering mapping
- Radio-Spectrum monitoring: 802.11, BLE, GSM, etc.

https://github.com/oxrawsec/gene

⁵https://github.com/oxrawsec/whids

D4 ENCAPSULATION PROTOCOL

D4 HEADER

Name	bit size	Description
version	uint 8	Version of the header
type	uint 8	Data encapsulated type
uuid	uint 128	Sensor UUID
timestamp	uint 64	Encapsulation time
hmac	uint 256	Authentication header (HMAC-SHA-256-128)
size	uint 32	Payload size

D4 HEADER

Туре	Description
0	Reserved
1	pcap (libpcap 2.4)
2	meta header (JSON)
3	generic log line
4	dnscap output
5	pcapng (diagnostic)
6	generic NDJSON or JSON Lines
7	generic YAF (Yet Another Flowmeter)
8	passivedns CSV stream
254	type defined by meta header (type 2)

D4 META HEADER

D4 header includes an easy way to **extend the protocol** (via type 2) without altering the format. Within a D4 session, the initial D4 packet(s) type 2 defines the custom headers and then the following packets with type 254 is the custom data encapsulated.

```
"type": "ja3-jl",
"encoding": "utf-8",
"tags": [
    "tlp:white"
],
"misp:org": "5b642239-4db4-4580-adf4-4ebd950d210f"
```

D4 SERVER

- D4 core server⁶ is a complete server to handle clients (sensors) including the decapsulation of the D4 protocol, control of sensor registrations, management of decoding protocols and dispatching to adequate decoders/analysers.
- D4 server is written in Python 3.6 and runs on standard GNU/Linux distribution.

⁶https://github.com/D4-project/d4-core

D4 SERVER HANDLING

D4 server reconstructs the encapsulated stream from the D4 sensor and saves it in a Redis stream.

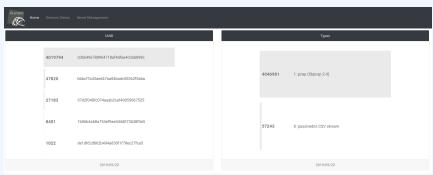
- Support TLS connection
- Unpack D4 header
- Verify client secret key (HMAC)
- check blocklist
- Filter by types (Only accept one connection by type-UUID except: type 254)
- Discard incorrect data
- Save data in a Redis Stream (unique for each session)

D4 SERVER - WORKER HANDLER

After the stream is processed depending of the type using dedicated worker.

- Worker Manager (one by type)
 - Check if a new session is created and valid data are saved in a Redis stream
 - Launch a new Worker for each session
- Worker
 - Get data from a stream
 - Reconstruct data
 - Save data on disk (with file rotation)
 - Save data in Redis. Create a queue for D4 Analyzer(s)

D4 SERVER - TYPE 254 WORKER HANDLER

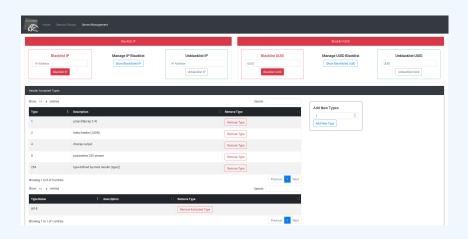

- Worker custom type (called Worker 2)
 - ► Get type 2 data from a stream
 - Reconstruct Ison
 - Extract extended type name
 - Use default type or special extended handler
 - Save Json on disk
 - Get type 254 data from a stream
 - Reconstruct type 254
 - Save data in Redis. Create a queue for D4 Analyzer(s)

D4 SERVER - MANAGEMENT INTERFACE

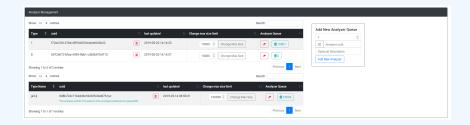
The D4 server provides a **web interface** to manage D4 sensors, sessions and analyzer.

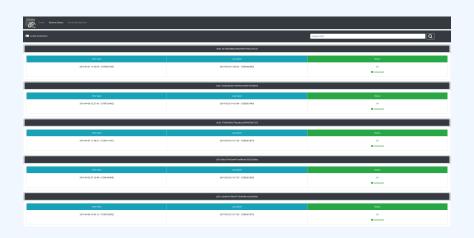
- Get Sensors status, errors and statistics
- Get all connected sensors
- Manage Sensors (stream size limit, secret key, ...)
- Manage Accepted types
- UUID/IP blocklist
- Create Analyzer Queues

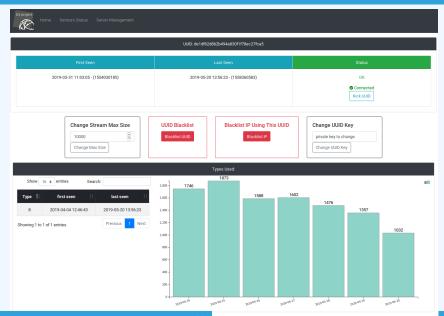
D4 SERVER - MAIN INTERFACE



Co-financed by the Connecting Europe Facility of the European Union




D4 SERVER - SERVER MANAGEMENT


D4 SERVER - SERVER MANAGEMENT

D4 SERVER - SENSOR OVERVIEW

D4 SERVER - SENSOR MANAGEMENT

REMOTE NETWORK CAPTURE

CIRCL operated honeybot for multiple years using a simple model of remote network capture.

Definition (Principle)

- KISS (Keep it simple stupid) Unix-like
- Linux & OpenBSD operating systems

Sensor

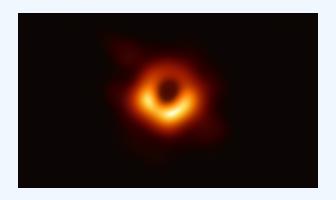
```
tcpdump -l -s 65535 -n -i vro -w - '(_not_port_
    $PORT_and_not_host_$HOST_)' | socat -
    OPENSSL-CONNECT:$COLLECTOR:$PORT,cert=/etc/
    openssl/client.pem,cafile=/etc/openssl/ca.crt,
    verify=1
```

REMOTE NETWORK CAPTURE

Limitations

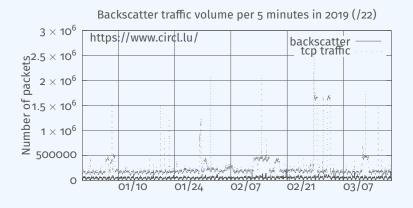
- \blacksquare Scalability \rightarrow one port per client
- Identification and registration of the client
- Integrity of the data

Encapsulating streams in D4


- Inspired by the unix command tee
- Read from standard input
- Add the d4 header
- Write it on standard output

USING D4 NATIVE CLIENT

```
tcpdump -n -so -w - | ./d4 -c ./conf | socat -
    OPENSSL-CONNECT:$D4-SERVER-IP-ADDRESS:$PORT,
    verify=1
```


Configuration directory Parameter Explanation type see D4 Header slide

A distributed Network telescope to observe DDoS attacks

MOTIVATION

DDoS Attacks produce an observable side-effect:

date (month / day)

WHAT CAN BE DERIVED FROM BACKSCATTER TRAFFIC?

- External point of view on ongoing Denial of Service attacks:
 - Confirm if there is a DDoS attack
 - Recover time line of attacked targets
 - **Confirm** which services (DNS, webserver, ...)
 - Observe Infrastructure changes
- Assess the state of an infrastructure under denial of service attack
 - Detect failure/addition of intermediate network equipments, firewalls, proxy servers etc
 - Detect DDoS mitigation devices
- Create models of DoS/DDoS attacks

3O 48

D4 IN THIS SETTING

D4 - for data collection and processing:

- provide various points of observation in non contiguous address space,
- aggregate and mix backscatter traffic collected from D4 sensors,
- **perform** analysis on big amount of data.

D4 - from a end-user perspective:

- provide backscatter analysis results,
- provide daily updates,
- provide additional relevant (or pivotal) information (DNS, BGP, etc.),
- **provide** an API and search capabilities.

FIRST RELEASE

- ✓ analyzer-d4-pibs⁷, an analyzer for a D4 network sensor:
 - processes data produced by D4 sensors (pcaps),
 - displays potential backscatter traffic on standard output,
 - **focuses** on TCP SYN flood in this first release.
- analyzer-d4-ipa⁸,
 - processes data produced by D4 sensors (pcaps),
 - analyze ICMP packets,

https://github.com/D4-project/analyzer-d4-pibs

⁸https://github.com/D4-project/analyzer-d4-ipa

Passive DNS

PROBLEM STATEMENT

- CIRCL (and other CSIRTs) have their own passive DNS⁹ collection mechanisms
- Current collection models are affected with DoH¹⁰ and centralised DNS services
- DNS answers collection is a tedious process
- Sharing Passive DNS stream between organisation is challenging due to privacy

⁹https://www.circl.lu/services/passive-dns/

¹⁰DNS over HTTPS

POTENTIAL STRATEGY

- Improve Passive DNS collection diversity by being closer to the source and limit impact of DoH (e.g. at the OS resolver level)
- Increasing diversity and mixing models before sharing/storing Passive DNS records
- Simplify process and tools to install for Passive DNS collection by relying on D4 sensors instead of custom mechanisms
- Provide a distributed infrastructure for mixing streams and filtering out the sharing to the validated partners

FIRST RELEASE

- ✓ analyzer-d4-passivedns¹¹, an analyzer for a D4 network sensor:
 - processes data produced by D4 sensors (in passivedns CSV format¹²),
 - ingests these into a Passive DNS server which can be queried later to search for the Passive DNS records,
 - provides a lookup server (using on redis-compatible backend) that is a Passive DNS REST server compliant to the Common Output Format¹³.

[&]quot;https://github.com/D4-project/analyzer-d4-passivedns

¹²https://github.com/gamelinux/passivedns

¹³https://tools.ietf.org/html/

draft-dulaunoy-dnsop-passive-dns-cof-04

COMMON OUTPUT FORMAT

- Consistent naming of fields across Passive DNS software based on the most common Passive DNS implementations
- Minimal set of fields to be supported
- Minimal set of optional fields to be supported
- Way to add "additional" fields via a simple registry mechanism (IANA-like)
- Simple and easily parsable format
- A gentle reminder regarding privacy aspects of Passive DNS

SAMPLE OUTPUT WWW.TERENA.ORG

MANDATORY FIELDS

- **rrname**: name of the queried resource records
 - JSON String
- rrtype : resource record type
 - ▶ JSON String (interpreted type of resource type if known)
- rdata : resource records of the query(ied) resource(s)
 - JSON String or an array of string if more than one unique triple
- time_first : first time that the resource record triple (rrname, rrtype, rdata) was seen
- time_last: last time that the resource record triple (rrname, rrtype, rdata) was seen
 - ▶ JSON Number (epoch value) UTC TZ

OPTIONAL FIELDS

- count : how many authoritative DNS answers were received by the Passive DNS collector
 - JSON Number
- **bailiwick**: closest enclosing zone delegated to a nameserver served in the zone of the resource records
 - ► JSON String

ADDITIONALS FIELDS

- **sensor_id** : Passive DNS sensor information
 - JSON String
- zone_time_first : specific first/last time seen when imported from a master file
- zone_time_last
 - JSON Number
- Additional fields can be requested via https://github. com/adulau/pdns-qof/wiki/Additional-Fields

41

Passive SSL revamping

OBJECTIVES - TLS FINGERPRINTING

Keep a log of links between:

- x509 certificates,
- ports,
- IP address,
- client (ja3),
- server (ja3s),

"JA3 is a method for creating SSL/TLS client fingerprints that should be easy to produce on any platform and can be easily shared for threat intelligence." 14

Pivot on additional data points during Incident Response

¹⁴https://github.com/salesforce/ja3

OBJECTIVES - MIND YOUR PS AND QS

Collect and **store** x509 certificates and TLS sessions:

- Public keys type and size,
- moduli and exponents,
- curves parameters.

Detect anti patterns in crypto:

- Shared Public Keys,
- Moduli that share one prime factor,
- Moduli that share both prime factor,
- Small factors,
- Nonces reuse / common preffix or suffix, etc.

FIRST RELEASE

- ✓ sensor-d4-tls-fingerprinting ¹⁵: **Extracts** and **fingerprints** certificates, and **computes** TLSH fuzzy hash.
- ✓ analyzer-d4-passivessl ¹⁶: **Stores** Certificates / PK details in a PostgreSQL DB.
- snake-oil-crypto ¹⁷: **Runs** weak crypto attacks against the dataset.
- lookup-d4-passivessl ¹⁸: **Exposes** the DB through a public REST API.

¹⁵github.com/D4-project/sensor-d4-tls-fingerprinting

¹6github.com/D4-project/analyzer-d4-passivessl

¹⁷github.com/D4-project/snake-oil-crypto

¹⁸ github.com/D4-project/lookup-d4-passivessl

FUTURE

- **Sensitive information sanitization** by specialized analyzers
- Previewing datasets collected in D4 sensor network and providing open data stream (if contributor agrees to share under specific conditions)
- Leverage MISP sharing communities to augment Threat Intelligence, and provide accurate metrology.

USF IT

- **Create** sensors easily with the generator ¹⁹.
- Manage your own sensors and servers, find shameful bugs and fill in github issues
- Even better, **send** Pull Requests!
- **Share** data to public servers to improve the datasets (and detection, response, etc.)
- Feed your MISP instances with D4's findings Share yours
- **Leech** data, write your own analyzers, do research

¹⁹https://github.com/d4-project/d4-sensor-generator

GET IN TOUCH IF YOU WANT TO JOIN THE PROJECT, HOST A SENSOR OR CONTRIBUTE

- Collaboration can include research partnership, sharing of collected streams or improving the software.
- Contact: info@circl.lu
- https://github.com/D4-Project
- https://twitter.com/d4_project
- https://d4-project.org
 - Passive DNS tutorial
 - Data sharing tutorial