Snake Oil Crypto:

How I stopped to worry and started to love crypto

Team CIRCL
https://www.d4-project.org/

2019/11/27

Jean-Louis Huynen

- Cryptography 101,
- Cryptography and Network captures,
- D4 passiveSSL Collection,
- Leveraging OpenPGP metedata,
- Checking for weak crypto.

Cryptography 101

Plaintext P: Text in clear,

- **Encryption** E: Process of disguising the plaintext to hide its content,
- **Ciphertext** C: Result of the Encryption process,
- Decryption D: Process of reverting encryption, transforming C into P,
- Encryption Key EK: Key to encrypt P into C,
- Decryption Key DK: Key to decrypt C into P,
- **Cryptanalysis**: Analysis of C to recover P without knowing K.

- **Confidentiality** : Ensure the secrecy of the message except for the **intended** recipient,
- Authentication : Proving a party's identity,
- Integrity : Verifying that data transmitted were not altered,
- Non-repudiation : Proving that the sender sent a given message.

- In-transit encryption: protects data while it is transferred from one machine to another,
- At-rest encryption: protects data stored on one machine.

It [cipher] should not require secrecy, and it should not be a problem if it falls into enemy hands.

There is no security in obscurity.

Black Box - Attackers may only see inputs / outputs:

- Ciphertext-Only Attackers (COA): see only the ciphertext,
- Known-Plaintext Attackers (KPA): see ciphertext and plaintext,
- Chosen-Plaintext Attacker (CPA): encrypt plaintext, and see ciphertext,
- Chosen-Ciphertext Attakers (CCA): encrypt plaintext, decrypt ciphertext.

Grey Box - Attackers see cipher's implementation:

 Side-Channel Attacks: study the behavior of the implementation (eg. tpm-fail[24420]),

> We discovered timing leakage on Intel firmware-based TPM (fTPM) as well as in STMicroelectronics' TPM chip. Both exhibit secretdependent execution times during cryptographic signature generation. While the key should remain safely inside the TPM hardware, we show how this information allows an attacker to recover 256-bit private keys from digital signature schemes based on elliptic curves.

ATTACKERS MODEL III

Invasive Attacks:

injecting faults[MFS⁺18],

ATTACKERS MODEL IV

decapping chips¹, reverse engineering²³, etc.

¹https://siliconpron.org/wiki/doku.php?id=decap:start ²http://siliconzoo.org ³http://degate.org

Cryptography and Network captures

D4 passiveSSL Collection

Leveraging OpenPGP metedata

Checking for weak crypto

IoT devices are often the weakest devices on a network:

- Usually the result of cheap engineering,
- sloppy patching cycles,
- sometimes forgotten-not monitored,
- few hardening features enabled.

We feel a bit safer when they use TLS, but should we?

⁴https://github.com/d4-project/snake-oil-crypto

Keep a log of links between:

- x509 certificates,
- ports,
- IP address,
- client (ja3),
- server (ja3s),

"JA3 is a method for creating SSL/TLS client fingerprints that should be easy to produce on any platform and can be easily shared for threat intelligence."⁵

Pivot on additional data points during Incident Response

⁵https://github.com/salesforce/ja3

Collect and **store** x509 certificates and TLS sessions:

- Public keys type and size,
- moduli and public exponents,
- curves parameters.
- Detect anti patterns in crypto:
 - Moduli that share one prime factor,
 - Moduli that share both prime factors, or private exponents,
 - Small factors,
 - Nonces reuse / common preffix or suffix, etc.

Focus on low hanging fruits that appeal to attackers

Researchers have shown that several devices generated their keypairs at boot time without enough entropy⁶:

```
prng.seed(seed)
p = prng.generate_random_prime()
// prng.add_entropy()
q = prng.generate_random_prime()
n = p*q
```

Given n=pq and n' = pq' it is trivial to recover the shared p by computing their **Greatest Common Divisor (GCD)**, and therefore **both private keys**⁷.

⁶Bernstein, Heninger, and Lange: http://facthacks.cr.yp.to/ ⁷http://www.loyalty.org/~schoen/rsa/

In Snake-Oil-Crypto we compute GCD⁸ between:

- between certificates having the same issuer,
- between certificates having the same subject,
- on keys collected from various sources (PassiveSSL, Certificate Transparency, shodan, censys, etc.),

"Check all the keys that we know of for vendor X"

⁸using Bernstein's Batch GCD algorithm

SNAKE OIL CRYPTO - MISP FEED

2019-11-08	Name: crypto-material [] References: 0 C Referenced by: 6 [] uses Object 13800 (network: x509) uses Object 13802 (network: x509) uses Object 13802 (network: x509) uses Object 13803 (network: x509) uses Object 13804 (network: x509)		
2019-11-08	Other	p: text	12732045980491482532629620809854872609730718866846479950748763 99251101386987265586481573653124576541684265313376164608426942 4192867704218331356123978614869
2019-11-08	Other	q: text	None
2019-11-08	Other	rsa-modulus-size: text	1024
2019-11-08	Other	type: text	RSA

The MISP feed:

- Allows for checking automatic checking by an IDS on hashed values,
- **contains** thousands on broken keys from a dozen of vendors,
- will be accessible upon request (info@circl.lu).

In the future:

- Automatic the vendor checks by performing TF-IDF on x509's subjects,
- **automatic** vendors notification.

- ✓ sensor-d4-tls-fingerprinting ⁹: Extracts and fingerprints certificates, and computes TLSH fuzzy hash.
- ✓ analyzer-d4-passivessl ¹⁰: Stores Certificates / PK details in a PostgreSQL DB.
- snake-oil-crypto ¹¹: **Performs** crypto checks, push results in MISP for notification
- lookup-d4-passivessl¹²: Exposes the DB through a public REST API.

⁹github.com/D4-project/sensor-d4-tls-fingerprinting ¹⁰github.com/D4-project/analyzer-d4-passivessl ¹¹github.com/D4-project/snake-oil-crypto ¹²github.com/D4-project/lookup-d4-passivessl

GET IN TOUCH IF YOU WANT TO JOIN/SUPPORT THE PROJECT, HOST A PASSIVE SSL SENSOR OR CONTRIBUTE

- Collaboration can include research partnership, sharing of collected streams or improving the software.
- Contact: info@circl.lu
- https://github.com/D4-Projecthttps://twitter.com/d4_project

REFERENCES I

- **TPM-FAIL: TPM MEETS TIMING AND LATTICE ATTACKS, 29TH USENIX** SECURITY SYMPOSIUM (USENIX SECURITY 20) (BOSTON, MA), USENIX ASSOCIATION, AUGUST 2020.
- Ross J. Anderson, Security engineering: A guide to building dependable distributed systems, 2 ed., Wiley Publishing, 2008.
- JEAN-PHILIPPE AUMASSON, SERIOUS CRYPTOGRAPHY: A PRACTICAL INTRODUCTION TO MODERN ENCRYPTION, NO STARCH PRESS, 2017.
- Dieter Gollmann, *Computer security* (3. ed.), Wiley, 2011.
- KOHEI MATSUDA, TATSUYA FUJII, NATSU SHOJI, TAKESHI SUGAWARA, KAZUO SAKIYAMA, YU-ICHI HAYASHI, MAKOTO NAGATA, AND NORIYUKI MIURA, A 286 F2/CELL DISTRIBUTED BULK-CURRENT SENSOR AND SECURE FLUSH CODE ERASER AGAINST LASER FAULT INJECTION ATTACK ON CRYPTOGRAPHIC PROCESSOR, IEEE JOURNAL OF SOLID-STATE CIRCUITS **53** (2018), NO. 11, 3174–3182.

REFERENCES II

ALFRED J. MENEZES, SCOTT A. VANSTONE, AND PAUL C. VAN OORSCHOT, HANDBOOK OF APPLIED CRYPTOGRAPHY, 1ST ED., CRC PRESS, INC., BOCA RATON, FL, USA, 1996.