## **D4 Project**

## Open and collaborative network monitoring

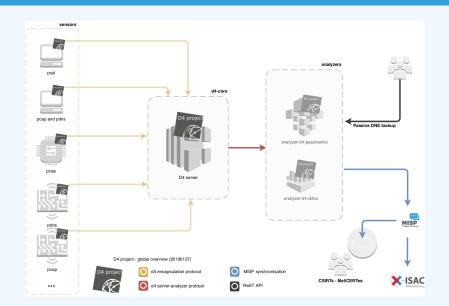
Team CIRCL
https://www.d4-project.org/

2019/05/22



TFAM CIRCL

#### PROBLEM STATEMENT


- CSIRTs (or private organisations) build their own honeypot, honeynet or blackhole monitoring network
- Designing, managing and operating such infrastructure is a tedious and resource intensive task
- Automatic sharing between monitoring networks from different organisations is missing
- Sensors and processing are often seen as blackbox or difficult to audit

#### **OBJECTIVE**

- Based on our experience with MISP¹ where sharing played an important role, we transpose the model in D4 project
- Keeping the protocol and code base simple and minimal
- Allowing every organisation to control and audit their own sensor network
- Extending D4 or encapsulating legacy monitoring protocols must be as simple as possible
- Ensuring that the sensor server has no control on the sensor (unidirectional streaming)
- Don't force users to use dedicated sensors and allow flexibility of sensor support (software, hardware, virtual)

https://github.com/MISP/MISP

## **D4 OVERVIEW**



## (SHORT) HISTORY

- D4 Project (co-funded under INEA CEF EU program) started -1st November 2018
- D4 encapsulation protocol version 1 published 1st
   December 2018
- vo.1 release of the D4 core<sup>2</sup> including a server and simple D4
   C client 21st January 2019
- First version of a golang D4 client³ running on ARM, MIPS, PPC and x86 **14th February 2019**

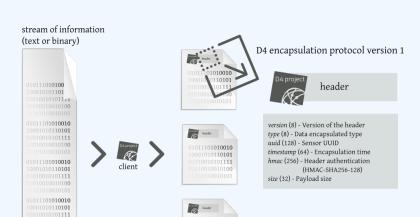
<sup>2</sup>https://www.github.com/D4-project/d4-core

<sup>3</sup>https://www.github.com/D4-project/d4-goclient/

## (SHORT) HISTORY

| Release                          | Date          |
|----------------------------------|---------------|
| analyzer-d4-passivedns-vo.1      | Apr. 5, 2019  |
| analyzer-d4-passivessl-0.1       | Apr. 25, 2019 |
| analyzer-d4-pibs-vo.1            | Apr. 8, 2019  |
| BGP-Ranking-1.0                  | Apr. 25, 2019 |
| d4-core-vo.1                     | Jan. 25, 2019 |
| d4-core-vo.2                     | Feb. 14, 2019 |
| d4-core-vo.3                     | Apr. 8, 2019  |
| d4-goclient-vo.1                 | Feb. 14, 2019 |
| d4-goclient-vo.2                 | Apr. 8, 2019  |
| d4-server-packer-0.1             | Apr. 25, 2019 |
| IPASN-History-1.0                | Apr. 25, 2019 |
| sensor-d4-tls-fingerprinting-0.1 | Apr. 25, 2019 |

see https://github.com/D4-Project


#### ROADMAP - OUTPUT

CIRCL will host a server instance for organisations willing to contribute to a public dataset without running their own D4 server:

- √ Blackhole DDoS
- ✓ Passive DNS
- ✓ Passive SSL
  - BGP mapping
- egress filtering mapping
- Radio-Spectrum monitoring: 802.11, BLE, etc.

...

#### **D4 ENCAPSULATION PROTOCOL**





## **D4 HEADER**

| Name      | bit size | Description                              |
|-----------|----------|------------------------------------------|
| version   | uint 8   | Version of the header                    |
| type      | uint 8   | Data encapsulated type                   |
| uuid      | uint 128 | Sensor UUID                              |
| timestamp | uint 64  | Encapsulation time                       |
| hmac      | uint 256 | Authentication header (HMAC-SHA-256-128) |
| size      | uint 32  | Payload size                             |

## **D4 HEADER**

| Туре | Description                          |
|------|--------------------------------------|
| 0    | Reserved                             |
| 1    | pcap (libpcap 2.4)                   |
| 2    | meta header (JSON)                   |
| 3    | generic log line                     |
| 4    | dnscap output                        |
| 5    | pcapng (diagnostic)                  |
| 6    | generic NDJSON or JSON Lines         |
| 7    | generic YAF (Yet Another Flowmeter)  |
| 8    | passivedns CSV stream                |
| 254  | type defined by meta header (type 2) |

#### D4 META HEADER

D4 header includes an easy way to **extend the protocol** (via type 2) without altering the format. Within a D4 session, the initial D4 packet(s) type 2 defines the custom headers and then the following packets with type 254 is the custom data encapsulated.

```
{
  "type": "ja3-jl",
  "encoding": "utf-8",
  "tags": [
     "tlp:white"
],
  "misp:org": "5b642239-4db4-4580-adf4-4ebd950d210f"
}
```

#### **D4 SERVER**

- D4 core server<sup>4</sup> is a complete server to handle clients (sensors) including the decapsulation of the D4 protocol, control of sensor registrations, management of decoding protocols and dispatching to adequate decoders/analysers.
- D4 server is written in Python 3.6 and runs on standard GNU/Linux distribution.

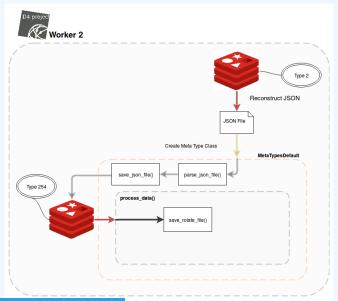
<sup>4</sup>https://github.com/D4-project/d4-core

#### D4 SERVER HANDLING

D4 server reconstructs the encapsulated stream from the D4 sensor and saves it in a Redis stream.

- Support TLS connection
- Unpack D4 header
- Verify client secret key (HMAC)
- check blocklist
- Filter by types (Only accept one connection by type-UUID except: type 254)
- Discard incorrect data
- Save data in a Redis Stream (unique for each session)

#### D4 SERVER - WORKER HANDLER

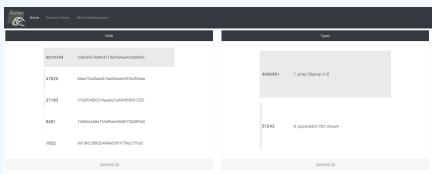

After the stream is processed depending of the type using dedicated worker.

- Worker Manager (one by type)
  - Check if a new session is created and valid data are saved in a Redis stream
  - Launch a new Worker for each session
- Worker
  - Get data from a stream
  - Reconstruct data
  - Save data on disk (with file rotation)
  - Save data in Redis. Create a queue for D4 Analyzer(s)

#### D4 SERVER - TYPE 254 WORKER HANDLER

- Worker custom type (called Worker 2)
  - Get type 2 data from a stream
  - Reconstruct Ison
  - Extract extended type name
  - Use default type or special extended handler
  - Save Json on disk
  - Get type 254 data from a stream
  - Reconstruct type 254
  - Save data in Redis. Create a queue for D4 Analyzer(s)

#### D4 SERVER - TYPE 254 - IMPLEMENTATION



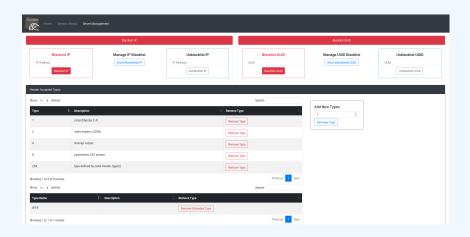

#### **D4 SERVER - MANAGEMENT INTERFACE**

The D4 server provides a **web interface** to manage D4 sensors, sessions and analyzer.

- Get Sensors status, errors and statistics
- Get all connected sensors
- Manage Sensors (stream size limit, secret key, ...)
- Manage Accepted types
- UUID/IP blocklist
- Create Analyzer Queues

#### D4 SERVER - MAIN INTERFACE

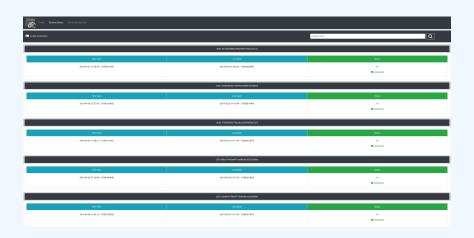




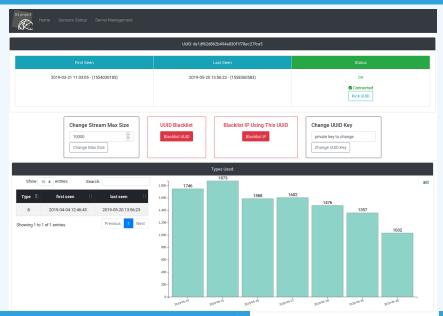

Co-financed by the Connecting Europe Facility of the European Union



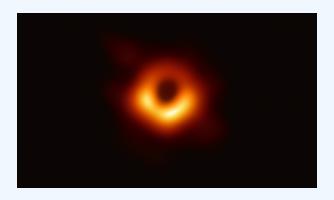



#### **D4 SERVER - SERVER MANAGEMENT**



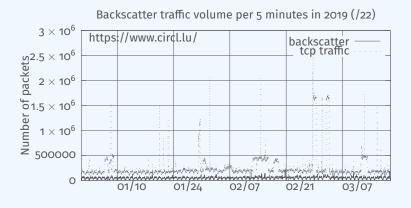

#### **D4 SERVER - SERVER MANAGEMENT**




#### **D4 SERVER - SENSOR OVERVIEW**



#### **D4 SERVER - SENSOR MANAGEMENT**




#### A distributed Network telescope to observe DDoS attacks



#### **MOTIVATION**

#### DDoS Attacks produce an observable side-effect:



date (month / day)

#### WHAT CAN BE DERIVED FROM BACKSCATTER TRAFFIC?

- External point of view on ongoing Denial of Service attacks:
  - Confirm if there is a DDoS attack
  - Recover time line of attacked targets
  - **Confirm** which services (DNS, webserver, ...)
  - Observe Infrastructure changes
- Assess the state of an infrastructure under denial of service attack
  - Detect failure/addition of intermediate network equipments, firewalls, proxy servers etc
  - Detect DDoS mitigation devices
- Create models of DoS/DDoS attacks

#### D4 IN THIS SETTING

D4 - for data collection and processing:

- provide various points of observation in non contiguous address space,
- aggregate and mix backscatter traffic collected from D4 sensors,
- **perform** analysis on big amount of data.

D4 - from a end-user perspective:

- **provide** backscatter analysis results,
- **provide** daily updates,
- provide additional relevant (or pivotal) information (DNS, BGP, etc.),
- **provide** an API and search capabilities.

#### FIRST RELEASE

- ✓ analyzer-d4-pibs<sup>5</sup>, an analyzer for a D4 network sensor:
  - processes data produced by D4 sensors (pcaps),
  - displays potential backscatter traffic on standard output,
  - **focuses** on TCP SYN flood in this first release.

<sup>5</sup>https://github.com/D4-project/analyzer-d4-pibs

**Passive DNS** 

#### **PROBLEM STATEMENT**

- CIRCL (and other CSIRTs) have their own passive DNS<sup>6</sup> collection mechanisms
- Current collection models are affected with DoH<sup>7</sup> and centralised DNS services
- DNS answers collection is a tedious process
- Sharing Passive DNS stream between organisation is challenging due to privacy

<sup>6</sup>https://www.circl.lu/services/passive-dns/

<sup>&</sup>lt;sup>7</sup>DNS over HTTPS

#### POTENTIAL STRATEGY

- Improve Passive DNS collection diversity by being closer to the source and limit impact of DoH (e.g. at the OS resolver level)
- Increasing diversity and mixing models before sharing/storing Passive DNS records
- Simplify process and tools to install for Passive DNS collection by relying on D4 sensors instead of custom mechanisms
- Provide a distributed infrastructure for mixing streams and filtering out the sharing to the validated partners

#### FIRST RELEASE

- √ analyzer-d4-passivedns<sup>8</sup>, an analyzer for a D4 network sensor:
  - processes data produced by D4 sensors (in passivedns CSV format<sup>9</sup>),
  - ingests these into a Passive DNS server which can be queried later to search for the Passive DNS records,
  - provides a lookup server (using on redis-compatible backend) that is a Passive DNS REST server compliant to the Common Output Format<sup>10</sup>.

<sup>8</sup>https://github.com/D4-project/analyzer-d4-passivedns

<sup>9</sup>https://github.com/gamelinux/passivedns

<sup>10</sup>https://tools.ietf.org/html/

draft-dulaunoy-dnsop-passive-dns-cof-04

**Passive SSL revamping** 

#### A PASSIVE SSL FINGERPRINTER

#### CSIRT's rationale for collecting TLS handshakes:

- **pivot** on additional data points,
- find owners of IP addresses,
- detect usage of CIDR blocks,
- **detect** vulnerable systems,
- detect compromised services,
- detect key material reuse,
- detect weak keys.

#### **OBJECTIVES - TLS FINGERPRINTING**

#### Keeping a log of links between:

- x509 certificates,
- ports,
- IP address,
- client (ja3),
- server (ja3s),

"JA3 is a method for creating SSL/TLS client fingerprints that should be easy to produce on any platform and can be easily shared for threat intelligence."<sup>11</sup>

<sup>11</sup>https://github.com/salesforce/ja3

#### **OBJECTIVES - MIND YOUR PS AND QS**

#### **Collect** and **store** x509 certificates and TLS sessions:

- Public keys type and size,
- moduli and exponents,
- curves parameters.

#### **Detect** anti patterns in crypto:

- Shared Public Keys,
- Moduli that share one prime factor,
- Moduli that share both prime factor,
- Small factors,
- Nonces reuse / common preffix or suffix, etc.

#### FIRST RELEASE

- ✓ sensor-d4-tls-fingerprinting <sup>12</sup>: **Extracts** and **fingerprints** certificates, and **computes** TLSH fuzzy hash.
- √ analyzer-d4-passivessl <sup>13</sup>: Stores Certificates / PK details in a PostgreSQL DB.
- lookup-d4-passivessl <sup>14</sup>: **Exposes** the DB through a public REST API.

<sup>12</sup>github.com/D4-project/sensor-d4-tls-fingerprinting

<sup>&</sup>lt;sup>13</sup>github.com/D4-project/analyzer-d4-passivessl

<sup>14</sup>github.com/D4-project/lookup-d4-passivessl

#### **FUTURE**

- Mixing models for passive collection streams (for privacy) in next version of D4 core server
- Interconnecting private D4 sensor networks with other D4 sensor networks (sharing to partners filtered stream)
- Previewing datasets collected in D4 sensor network and providing open data stream (if contributor agrees to share under specific conditions)
- Leverage MISP sharing communities to augment Threat Intelligence, and provide accurate metrology.

# GET IN TOUCH IF YOU WANT TO JOIN THE PROJECT, HOST A SENSOR OR CONTRIBUTE

- Collaboration can include research partnership, sharing of collected streams or improving the software.
- Contact: info@circl.lu
- https://github.com/D4-Project
- https://twitter.com/d4\_project
- https://d4-project.org