architecture/docs/workshop/0-introduction/d4-introduction.tex

322 lines
10 KiB
TeX

% Full instructions available at:
% https://github.com/elauksap/focus-beamertheme
\documentclass{beamer}
\usetheme[numbering=progressbar]{focus}
\usepackage{tikz}
\usetikzlibrary{positioning}
\usetikzlibrary{shapes,arrows}
\usepackage{transparent}
\usepackage{fancyvrb}
\usepackage{listings}
\definecolor{main}{RGB}{47, 161, 219}
%\definecolor{textcolor}{RGB}{128, 128, 128}
\definecolor{background}{RGB}{240, 247, 255}
\definecolor{textcolor}{RGB}{85, 87, 83}
\title{D4 Project}
\subtitle{Open and collaborative network monitoring}
\author{Alexandre Dulaunoy - Sami Mokaddem}
\titlegraphic{\includegraphics[scale=0.20]{d4-logo.pdf}}
\institute{Team CIRCL \\ \url{https://www.d4-project.org/}}
\date{20190207}
\begin{document}
\begin{frame}
\maketitle
\end{frame}
\begin{frame}
\frametitle{Problem statement}
\begin{itemize}
\item CSIRTs (or private organisations) build their {\bf own honeypot, honeynet or blackhole monitoring network}
\item Designing, managing and operating such infrastructure is a tedious and resource intensive task
\item {\bf Automatic sharing} between monitoring networks from different organisations is missing
\item Sensors and processing are often seen as blackbox or difficult to audit
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Objective}
\begin{itemize}
\item Based on our experience with MISP\footnote{\url{https://github.com/MISP/MISP}} where sharing played an important role, we transpose
the model in D4 project
\item Keeping the protocol and code base {\bf simple and minimal}
\item Allowing every organisation to {\bf control and audit their own sensor network}
\item Extending D4 or {\bf encapsulating legacy monitoring protocols} must be as simple as possible
\item Ensuring that the sensor server has {\bf no control on the sensor} (unidirectional streaming)
\item Don't force users to use dedicated sensors and allow {\bf flexibility of sensor support} (software, hardware, virtual)
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{(short) History}
\begin{itemize}
\item D4 Project (co-funded under INEA CEF EU program) started - 1st November 2018
\item D4 encapsulation protocol version 1 published - 1st December 2018
\item v0.1 release of the D4 core\footnote{\url{https://www.github.com/D4-project/d4-core}} including a server and simple D4 C client - 21st January 2018
\item First version of a golang D4 client\footnote{\url{https://www.github.com/D4-project/d4-goclient/}} running on ARM, MIPS, PPC and x86 - January 2018
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{D4 Overview}
\includegraphics[scale=0.38]{d4-overview.pdf}
\end{frame}
\begin{frame}
\frametitle{Roadmap (next 2 months)}
\begin{itemize}
\item Passive DNS analyzer (alpha version released)
\item Passive SSL collector and analyzer
\item Backscatter DDoS traffic analyzer
\item {\bf Default server} (blackhole monitoring or Passive DNS collector) at CIRCL for organisations willing to contribute without running their own D4 server
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{D4 encapsulation protocol}
\includegraphics[scale=0.38]{d4-protocol-encapsulation.png}
\end{frame}
\begin{frame}
\frametitle{D4 Header}
\begin{tabular}{|l|l|l|}
\hline
Name & bit size& Description\\
\hline
version & uint 8 & Version of the header \\
type & uint 8 & Data encapsulated type\\
uuid & uint 128 & Sensor UUID\\
timestamp & uint 64 & Encapsulation time\\
hmac & uint 256 & Authentication header (HMAC-SHA-256-128)\\
size & uint 32 & Payload size\\
\hline
\end{tabular}
\end{frame}
\begin{frame}
\frametitle{D4 Header}
\framesubtitle{Types}
\begin{tabular}{|l|l|}
\hline
Type & Description\\
\hline
0 & Reserved\\
1 & pcap (libpcap 2.4)\\
2 & meta header (JSON)\\
3 & generic log line\\
4 & dnscap output\\
5 & pcapng (diagnostic)\\
6 & generic NDJSON or JSON Lines\\
7 & generic YAF (Yet Another Flowmeter)\\
8 & passivedns CSV stream\\
254 & type defined by meta header (type 2)\\
\hline
\end{tabular}
\end{frame}
\begin{frame}
\frametitle{D4 meta header}
\framesubtitle{Meta types}
D4 header includes an easy way to {\bf extend the protocol} (via type 2) without altering the format. Within a D4 session, the initial D4 packet(s) type 2 defines
the custom headers and then the following packets with type 254 is the custom data encapsulated.
\small
\input{meta.tex}
\end{frame}
\begin{frame}
\frametitle{D4-core server}
\begin{itemize}
\item D4 core server\footnote{\url{https://github.com/D4-project/d4-core}} is a complete server to handle clients (sensors) including the decapsulation of the D4 protocol, control of sensor registrations, management of decoding protocols and dispatching to adequate decoders/analysers.
\item D4 server is written in Python 3.6 and runs on standard GNU/Linux distribution.
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{}
{\center Use-case: migrating a legacy network capture model into a D4 network sensor
}
\end{frame}
\begin{frame}
\frametitle{Remote network capture}
CIRCL operated honeybot for multiple years using a simple model of remote network capture.
\begin{definition}[Principle]
\begin{itemize}
\item KISS (Keep it simple stupid) - Unix-like
\item Linux \& OpenBSD operating systems
\end{itemize}
\end{definition}
\begin{block}{Sensor}
\lstset{%
language=bash,
backgroundcolor=\color{gray!25},
basicstyle=\ttfamily,
breaklines=true,
columns=fullflexible
}
\input{tcpdump.tex}
\end{block}
\end{frame}
\begin{frame}
\frametitle{Remote network capture}
\begin{block}{Limitations}
\begin{itemize}
\item Scalability $\to$ one port per client
\item Identification and registration of the client
\item Integrity of the data
\end{itemize}
\end{block}
\begin{block}{Multiplexing streams in D4}
\begin{itemize}
\item Inspired by the unix command {\tt tee}
\item Read from standard input
\item Add the d4 header
\item Write it on standard output
\end{itemize}
\end{block}
\end{frame}
\begin{frame}
\frametitle{Remote network capture with D4}
\frametitle{Using D4 native client}
\lstset{%
language=bash,
backgroundcolor=\color{gray!25},
basicstyle=\ttfamily,
breaklines=true,
columns=fullflexible
}
\input{d4-client.tex}
\begin{block}{Configuration directory}
\begin{tabular}{l|l}
Parameter & Explanation\\
\hline
type & see D4 Header slide\\
source & standard input\\
key & HMAC key\\
uuid & Identifier of the sensor\\
version & version of the sensor\\
destination & standard output\\
snaplen & length of data being read \& written\\
\end{tabular}
\end{block}
\end{frame}
\begin{frame}
\frametitle{}
{\center Use-case: D4 analyzer to detect DDoS attacks in backscatter traffic
}
\end{frame}
\begin{frame}
\frametitle{Observing SYN floods attacks in backscatter traffic}
Attack description
\begin{tikzpicture}{scale=0.4}
\node[rectangle,draw,fill=red!80] (a) at (0,0) {Attacker};
\node[anchor=west] at (0.93,0.25) {Spoofed requests $H_{0},H_{1},H_{2},H_{3},...$};
\node [rectangle,draw,fill=blue!25,anchor=east] at (8,0) (v) {Victim};
\draw [->](a) --(v);
\foreach \x in {0,1,2,3} {
\node [rectangle,draw,fill=green!25,anchor=east] at (\x*2+1,-2) {$H_{\x}$};
%Horizontal lines
\draw (\x*2+1, -\x*0.25-0.5)--(7.0+\x*.25,-\x*0.25-0.5);
%Links to the victim
\draw (7.0+\x*.25,-\x*0.25-0.5) -- (7.0+\x*.25,-0.25);
%Links to hosts
\draw[->] (\x*2+1, -\x*0.25-0.5)--(\x*2+1,-1.70);
}
\end{tikzpicture}
\begin{center}
\begin{tabular}{|l|}
\hline
Connections\\
\hline
$H_{0}$\\
\hline
$H_{1}$\\
\hline
$H_{2}$\\
\hline
$H_{3}$\\
\hline
\end{tabular}
\end{center}
\end{frame}
\begin{frame}
\frametitle{What can be derived from backscatter traffic?}
\begin{itemize}
\item External point of view on ongoing denial of service attacks
\item Confirm if there is a DDoS attack
\item Recover time line of attacked targets
\item Confirm which services are a target (DNS, webserver, $\dots$)
\item Infrastructure changes or updates
\item Assess the state of an infrastructure under denial of service attack
\begin{itemize}
\item Detect failure/addition of intermediate network equipments, firewalls, proxy servers etc
\item Detect DDoS mitigation devices or services
\end{itemize}
\item Create probabilistic models of denial of service attacks
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Confirm if there is/was a DDoS attack}
\begin{block}{Problem}
\begin{itemize}
\item Distinguish between compromised infrastructure and backscatter
\item Look at TCP flags $\to$ filter out single SYN flags
\item Focus on ACK, SYN/ACK, ...
\item Do not limit to SYN/ACK or ACK $\to$ ECE (ECN Echo)\footnote{\url{https://tools.ietf.org/html/rfc3168}}
\end{itemize}
\end{block}
\input{flags.tex}
\end{frame}
\begin{frame}
\frametitle{Passive Identification of Backscatter (WiP)}
\lstset{%
language=bash,
backgroundcolor=\color{gray!25},
basicstyle=\ttfamily,
breaklines=true,
columns=fullflexible
}
\input{pibs.tex}
Early version is available of PIBS\footnote{\url{https://github.com/D4-project/analyzer-d4-pibs}}
with a focus on TCP traffic.
\begin{tabular}{l|l}
Options & Explanations\\
\hline
-r & read pcap file\\
-b & display IPs under DDoS on standard output\\
\end{tabular}
\begin{tabular}{l}
Dependencies\\
\hline
libwiretap-dev\\
libhiredis-dev\\
libwsutil-dev\\
\end{tabular}
\end{frame}
\end{document}