architecture/docs/workshop/0-introduction/d4-introduction.tex

494 lines
16 KiB
TeX

% Full instructions available at:
% https://github.com/elauksap/focus-beamertheme
\documentclass{beamer}
\usetheme[numbering=progressbar]{focus}
\usepackage{tikz}
\usetikzlibrary{positioning}
\usetikzlibrary{shapes,arrows}
\usepackage{transparent}
\usepackage{fancyvrb}
\usepackage{tabularx}
\usepackage{ulem}
\usepackage{listings}
\definecolor{main}{RGB}{47, 161, 219}
%\definecolor{textcolor}{RGB}{128, 128, 128}
\definecolor{background}{RGB}{240, 247, 255}
\definecolor{textcolor}{RGB}{85, 87, 83}
\title{D4 Project}
\subtitle{Open and collaborative network monitoring}
\author{TEAM CIRCL}
\titlegraphic{\includegraphics[scale=0.20]{d4-logo.pdf}}
\institute{\url{https://www.d4-project.org/}}
\date{2019/09/23}
\begin{document}
\begin{frame}
\maketitle
\end{frame}
\begin{frame}
\frametitle{Problem statement}
\begin{itemize}
\item CSIRTs (or private organisations) build their {\bf own honeypot, honeynet or blackhole monitoring network}
\item Designing, managing and operating such infrastructure is a tedious and resource intensive task
\item {\bf Automatic sharing} between monitoring networks from different organisations is missing
\item Sensors and processing are often seen as blackbox or difficult to audit
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Objective}
\begin{itemize}
\item Based on our experience with MISP\footnote{\url{https://github.com/MISP/MISP}} where sharing played an important role, we transpose
the model in D4 project
\item Keeping the protocol and code base {\bf simple and minimal}
\item Allowing every organisation to {\bf control and audit their own sensor network}
\item Extending D4 or {\bf encapsulating legacy monitoring protocols} must be as simple as possible
\item Ensuring that the sensor server has {\bf no control on the sensor} (unidirectional streaming)
\item Don't force users to use dedicated sensors and allow {\bf flexibility of sensor support} (software, hardware, virtual)
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{(short) History}
\begin{itemize}
\item D4 Project (co-funded under INEA CEF EU program) started - \textbf{1st November 2018}
\item D4 encapsulation protocol version 1 published - \textbf{1st December 2018}
\item v0.1 release of the D4 core\footnote{\url{https://www.github.com/D4-project/d4-core}} including a server and simple D4 C client - \textbf{21st January 2019}
\item First version of a golang D4 client\footnote{\url{https://www.github.com/D4-project/d4-goclient/}} running on ARM, MIPS, PPC and x86 - \textbf{January 2019}
\item First Analyzers - \textbf{Spring 2019}
\item Client Generator - \textbf{Summer 2019}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{(short) History}
\begin{center}
\resizebox{!}{100pt}{%
\begin{tabularx}{\linewidth}%
{>{\setlength\hsize{0.6\hsize}\raggedright}X%
>{\setlength\hsize{0.4\hsize}\raggedright}X}
\hline
Release & Date \tabularnewline
\hline
AIL-framework-v1.5 & Apr. 26, 2019 \tabularnewline
... & \tabularnewline
AIL-framework-v2.1 & Aug. 14, 2019 \tabularnewline
analyzer-d4-balboa-v0.1 & Aug. 19, 2019 \tabularnewline
analyzer-d4-passivedns-v0.1 & Apr. 5, 2019 \tabularnewline
analyzer-d4-passivessl-0.1 & Apr. 25, 2019 \tabularnewline
analyzer-d4-pibs-v0.1 & Apr. 8, 2019 \tabularnewline
BGP-Ranking-1.0 & Apr. 25, 2019 \tabularnewline
BGP-Ranking-1.1 & Aug. 19, 2019 \tabularnewline
d4-core-v0.1 & Jan. 25, 2019 \tabularnewline
d4-core-v0.2 & Feb. 14, 2019 \tabularnewline
d4-core-v0.3 & Apr. 8, 2019 \tabularnewline
d4-goclient-v0.1 & Feb. 14, 2019 \tabularnewline
d4-goclient-v0.2 & Apr. 8, 2019 \tabularnewline
d4-sensor-generator-v0.1 & Aug. 22, 2019 \tabularnewline
d4-server-packer-0.1 & Apr. 25, 2019 \tabularnewline
IPASN-History-1.0 & Apr. 25, 2019 \tabularnewline
IPASN-History-1.1 & Aug. 19, 2019 \tabularnewline
sensor-d4-tls-fingerprinting-0.1 & Apr. 25, 2019 \tabularnewline
\hline
\end{tabularx}%
}
\end{center}
see \url{https://github.com/D4-Project}
\end{frame}
\begin{frame}
\frametitle{D4 Overview}
\includegraphics[scale=0.38]{../../diagram/d4-overview.png}
\end{frame}
\begin{frame}
\frametitle{D4 Overview - Connecting Sensor Networks}
\includegraphics[scale=0.46]{../../diagram/mixing-d4-1.pdf}
{\tiny \url{https://d4-project.org/2019/06/17/sharing-between-D4-sensors.html}}
\end{frame}
\begin{frame}
\frametitle{What to do with it}
\begin{itemize}
\item Passive DNS collection
\item Passive SSL collection
\item AIL collection
\item Correlations, CTI
\item DDoS Detection
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{D4 Overview: DDoS}
\includegraphics[width=\textwidth]{../../diagram/theconversation.pdf}
{\tiny \url{https://d4-project.org/2019/08/29/state-of-the-art-DDoS.html}}
\end{frame}
\begin{frame}
\frametitle{Roadmap - output}
CIRCL hosts a server instance for organisations willing to
contribute to a public dataset without running their own D4 server:
\begin{itemize}
\item [\checkmark] Blackhole DDoS
\item [\checkmark] Passive DNS
\item [\checkmark] Passive SSL
\item Gene\footnote{\url{https://github.com/0xrawsec/gene}} / WHIDS\footnote{\url{https://github.com/0xrawsec/whids}} (sysmon)
\item BGP mapping
\item egress filtering mapping
\item Radio-Spectrum monitoring: 802.11, BLE, \sout{GSM}, etc.
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{D4 encapsulation protocol}
\includegraphics[scale=0.38]{d4-protocol-encapsulation.png}
\end{frame}
\begin{frame}
\frametitle{D4 Header}
\begin{tabular}{|l|l|l|}
\hline
Name & bit size& Description\\
\hline
version & uint 8 & Version of the header \\
type & uint 8 & Data encapsulated type\\
uuid & uint 128 & Sensor UUID\\
timestamp & uint 64 & Encapsulation time\\
hmac & uint 256 & Authentication header (HMAC-SHA-256-128)\\
size & uint 32 & Payload size\\
\hline
\end{tabular}
\end{frame}
\begin{frame}
\frametitle{D4 Header}
\framesubtitle{Types}
\begin{tabular}{|l|l|}
\hline
Type & Description\\
\hline
0 & Reserved\\
1 & pcap (libpcap 2.4)\\
2 & meta header (JSON)\\
3 & generic log line\\
4 & dnscap output\\
5 & pcapng (diagnostic)\\
6 & generic NDJSON or JSON Lines\\
7 & generic YAF (Yet Another Flowmeter)\\
8 & passivedns CSV stream\\
254 & type defined by meta header (type 2)\\
\hline
\end{tabular}
\end{frame}
\begin{frame}
\frametitle{D4 meta header}
\framesubtitle{Meta types}
D4 header includes an easy way to {\bf extend the protocol} (via type 2) without altering the format. Within a D4 session, the initial D4 packet(s) type 2 defines
the custom headers and then the following packets with type 254 is the custom data encapsulated.
\small
\input{meta.tex}
\end{frame}
\begin{frame}
\frametitle{D4 server}
\begin{itemize}
\item D4 core server\footnote{\url{https://github.com/D4-project/d4-core}} is a complete server to handle clients (sensors) including the decapsulation of the D4 protocol, control of sensor registrations, management of decoding protocols and dispatching to adequate decoders/analysers.
\item D4 server is written in Python 3.6 and runs on standard GNU/Linux distribution.
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{D4 server handling}
D4 server reconstructs the encapsulated stream from the D4 sensor and saves it in a Redis stream.
\begin{itemize}
\item Support TLS connection
\item Unpack D4 header
\item Verify client secret key (HMAC)
\item check blocklist
\item Filter by types (Only accept one connection by type-UUID - except: type 254)
\item Discard incorrect data
\item Save data in a Redis Stream (unique for each session)
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{D4 server - worker handler}
After the stream is processed depending of the type using dedicated worker.
\begin{itemize}
\item Worker Manager (one by type)
\begin{itemize}
\item Check if a new session is created and valid data are saved in a Redis stream
\item Launch a new Worker for each session
\end{itemize}
\item Worker
\begin{itemize}
\item Get data from a stream
\item Reconstruct data
\item Save data on disk (with file rotation)
\item Save data in Redis. Create a queue for D4 Analyzer(s)
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{D4 server - type 254 worker handler}
\begin{itemize}
\item Worker custom type (called Worker 2)
\begin{itemize}
\item Get type 2 data from a stream
\item Reconstruct Json
\item Extract extended type name
\item Use default type or special extended handler
\item Save Json on disk
\item Get type 254 data from a stream
\item Reconstruct type 254
\item Save data in Redis. Create a queue for D4 Analyzer(s)
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{D4 server - management interface}
The D4 server provides a {\bf web interface} to manage D4 sensors, sessions and analyzer.
\begin{itemize}
\item Get Sensors status, errors and statistics
\item Get all connected sensors
\item Manage Sensors (stream size limit, secret key, ...)
\item Manage Accepted types
\item UUID/IP blocklist
\item Create Analyzer Queues
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{D4 server - main interface}
\includegraphics[width=\textwidth]{./d4-5.png}
\end{frame}
\begin{frame}
\frametitle{D4 server - server management}
\includegraphics[width=\textwidth]{./d4-2.png}
\end{frame}
\begin{frame}
\frametitle{D4 server - server management}
\includegraphics[width=\textwidth]{./d4-3.png}
\end{frame}
\begin{frame}
\frametitle{D4 server - sensor overview}
\includegraphics[width=\textwidth]{./d4-1.png}
\end{frame}
\begin{frame}
\frametitle{D4 server - sensor management}
\includegraphics[width=\textwidth]{./d4-4.png}
\end{frame}
\begin{frame}
\frametitle{}
{\center Use-case: migrating a legacy network capture model into a D4 network sensor
}
\end{frame}
\begin{frame}
\frametitle{Remote network capture}
CIRCL operated honeybot for multiple years using a simple model of remote network capture.
\begin{definition}[Principle]
\begin{itemize}
\item KISS (Keep it simple stupid) - Unix-like
\item Linux \& OpenBSD operating systems
\end{itemize}
\end{definition}
\begin{block}{Sensor}
\lstset{%
language=bash,
backgroundcolor=\color{gray!25},
basicstyle=\ttfamily,
breaklines=true,
columns=fullflexible
}
\input{tcpdump.tex}
\end{block}
\end{frame}
\begin{frame}
\frametitle{Remote network capture}
\begin{block}{Limitations}
\begin{itemize}
\item Scalability $\to$ one port per client
\item Identification and registration of the client
\item Integrity of the data
\end{itemize}
\end{block}
\begin{block}{Encapsulating streams in D4}
\begin{itemize}
\item Inspired by the unix command {\tt tee}
\item Read from standard input
\item Add the d4 header
\item Write it on standard output
\end{itemize}
\end{block}
\end{frame}
\begin{frame}
\frametitle{Remote network capture with D4}
\frametitle{Using D4 native client}
\lstset{%
language=bash,
backgroundcolor=\color{gray!25},
basicstyle=\ttfamily,
breaklines=true,
columns=fullflexible
}
\input{d4-client.tex}
\begin{block}{Configuration directory}
\begin{tabular}{l|l}
Parameter & Explanation\\
\hline
type & see D4 Header slide\\
source & standard input\\
key & HMAC key\\
uuid & Identifier of the sensor\\
version & version of the sensor\\
destination & standard output\\
snaplen & length of data being read \& written\\
\end{tabular}
\end{block}
\end{frame}
\begin{frame}
\frametitle{}
{\center Use-case: D4 analyzer to detect DDoS attacks in backscatter traffic
}
\end{frame}
\begin{frame}
\frametitle{Observing SYN floods attacks in backscatter traffic}
Attack description
\begin{tikzpicture}{scale=0.4}
\node[rectangle,draw,fill=red!80] (a) at (0,0) {Attacker};
\node[anchor=west] at (0.93,0.25) {Spoofed requests $H_{0},H_{1},H_{2},H_{3},...$};
\node [rectangle,draw,fill=blue!25,anchor=east] at (8,0) (v) {Victim};
\draw [->](a) --(v);
\foreach \x in {0,1,2,3} {
\node [rectangle,draw,fill=green!25,anchor=east] at (\x*2+1,-2) {$H_{\x}$};
%Horizontal lines
\draw (\x*2+1, -\x*0.25-0.5)--(7.0+\x*.25,-\x*0.25-0.5);
%Links to the victim
\draw (7.0+\x*.25,-\x*0.25-0.5) -- (7.0+\x*.25,-0.25);
%Links to hosts
\draw[->] (\x*2+1, -\x*0.25-0.5)--(\x*2+1,-1.70);
}
\end{tikzpicture}
\begin{center}
\begin{tabular}{|l|}
\hline
Connections\\
\hline
$H_{0}$\\
\hline
$H_{1}$\\
\hline
$H_{2}$\\
\hline
$H_{3}$\\
\hline
\end{tabular}
\end{center}
\end{frame}
\begin{frame}
\frametitle{What can be derived from backscatter traffic?}
\begin{itemize}
\item External point of view on ongoing denial of service attacks
\item Confirm if there is a DDoS attack
\item Recover time line of attacked targets
\item Confirm which services are a target (DNS, webserver, $\dots$)
\item Infrastructure changes or updates
\item Assess the state of an infrastructure under denial of service attack
\begin{itemize}
\item Detect failure/addition of intermediate network equipments, firewalls, proxy servers etc
\item Detect DDoS mitigation devices or services
\end{itemize}
\item Create probabilistic models of denial of service attacks
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Confirm if there is/was a DDoS attack}
\begin{block}{Problem}
\begin{itemize}
\item Distinguish between compromised infrastructure and backscatter
\item Look at TCP flags $\to$ filter out single SYN flags
\item Focus on ACK, SYN/ACK, ...
\item Do not limit to SYN/ACK or ACK $\to$ ECE (ECN Echo)\footnote{\url{https://tools.ietf.org/html/rfc3168}}
\end{itemize}
\end{block}
\input{flags.tex}
\end{frame}
\begin{frame}
\frametitle{Passive Identification of Backscatter (WiP)}
\lstset{%
language=bash,
backgroundcolor=\color{gray!25},
basicstyle=\ttfamily,
breaklines=true,
columns=fullflexible
}
\input{pibs.tex}
Early version is available of PIBS\footnote{\url{https://github.com/D4-project/analyzer-d4-pibs}}
with a focus on TCP traffic.
\begin{tabular}{l|l}
Options & Explanations\\
\hline
-r & read pcap file\\
-b & display IPs under DDoS on standard output\\
\end{tabular}
\begin{tabular}{l}
Dependencies\\
\hline
libwiretap-dev\\
libhiredis-dev\\
libwsutil-dev\\
\end{tabular}
\end{frame}
\begin{frame}
\frametitle{Get in touch if you want to join the project, host a sensor or contribute}
\begin{itemize}
\item Collaboration can include research partnership, sharing of collected streams or improving the software.
\item Contact: info@circl.lu
\item \url{https://github.com/D4-Project} - \url{https://twitter.com/d4_project}
\end{itemize}
\end{frame}
\end{document}