mirror of https://github.com/MISP/PyMISP
391 lines
13 KiB
Python
391 lines
13 KiB
Python
|
#!/usr/bin/env python
|
||
|
# -*- coding: utf-8 -*-
|
||
|
|
||
|
from json import JSONDecoder
|
||
|
import pygal
|
||
|
from pygal.style import Style
|
||
|
import pandas
|
||
|
import numpy
|
||
|
from scipy import stats
|
||
|
from pytaxonomies import Taxonomies
|
||
|
import re
|
||
|
import matplotlib.pyplot as plt
|
||
|
from matplotlib import pylab
|
||
|
import os
|
||
|
import date_tools
|
||
|
from dateutil.parser import parse
|
||
|
|
||
|
# ############### Tools ################
|
||
|
|
||
|
|
||
|
def selectInRange(Events, begin=None, end=None):
|
||
|
inRange = []
|
||
|
for i, Event in Events.iterrows():
|
||
|
if date_tools.dateInRange(parse(Event['date']), begin, end):
|
||
|
inRange.append(Event.tolist())
|
||
|
inRange = pandas.DataFrame(inRange)
|
||
|
temp = Events.columns.tolist()
|
||
|
if inRange.empty:
|
||
|
return None
|
||
|
inRange.columns = temp
|
||
|
return inRange
|
||
|
|
||
|
|
||
|
def getTaxonomies(dataframe):
|
||
|
taxonomies = Taxonomies()
|
||
|
taxonomies = list(taxonomies.keys())
|
||
|
notInTaxo = []
|
||
|
count = 0
|
||
|
for taxonomy in taxonomies:
|
||
|
empty = True
|
||
|
for it in dataframe.iterrows():
|
||
|
if it[0].startswith(taxonomy):
|
||
|
empty = False
|
||
|
dataframe = dataframe.drop([it[0]])
|
||
|
count = count + 1
|
||
|
if empty is True:
|
||
|
notInTaxo.append(taxonomy)
|
||
|
if dataframe.empty:
|
||
|
emptyOther = True
|
||
|
else:
|
||
|
emptyOther = False
|
||
|
for taxonomy in notInTaxo:
|
||
|
taxonomies.remove(taxonomy)
|
||
|
return taxonomies, emptyOther
|
||
|
|
||
|
|
||
|
def buildDoubleIndex(index1, index2, datatype):
|
||
|
it = -1
|
||
|
newindex1 = []
|
||
|
for index in index2:
|
||
|
if index == 0:
|
||
|
it += 1
|
||
|
newindex1.append(index1[it])
|
||
|
arrays = [newindex1, index2]
|
||
|
tuples = list(zip(*arrays))
|
||
|
return pandas.MultiIndex.from_tuples(tuples, names=['event', datatype])
|
||
|
|
||
|
|
||
|
def buildNewColumn(index2, column):
|
||
|
it = -1
|
||
|
newcolumn = []
|
||
|
for index in index2:
|
||
|
if index == 0:
|
||
|
it += 1
|
||
|
newcolumn.append(column[it])
|
||
|
return newcolumn
|
||
|
|
||
|
|
||
|
def addColumn(dataframe, columnList, columnName):
|
||
|
dataframe.loc[:, columnName] = pandas.Series(columnList, index=dataframe.index)
|
||
|
|
||
|
|
||
|
def concat(data):
|
||
|
return pandas.concat(data, axis=1)
|
||
|
|
||
|
|
||
|
def createFakeEmptyTagsSeries():
|
||
|
return pandas.Series({'Faketag': 0})
|
||
|
|
||
|
|
||
|
def removeFaketagRow(dataframe):
|
||
|
return dataframe.drop(['Faketag'])
|
||
|
|
||
|
|
||
|
def getCopyDataframe(dataframe):
|
||
|
return dataframe.copy()
|
||
|
|
||
|
|
||
|
def createDictTagsColour(colourDict, tags):
|
||
|
temp = tags.groupby(['name', 'colour']).count()['id']
|
||
|
levels_name = temp.index.levels[0]
|
||
|
levels_colour = temp.index.levels[1]
|
||
|
labels_name = temp.index.labels[0]
|
||
|
labels_colour = temp.index.labels[1]
|
||
|
|
||
|
for i in range(len(labels_name)):
|
||
|
colourDict[levels_name[labels_name[i]]] = levels_colour[labels_colour[i]]
|
||
|
|
||
|
|
||
|
def createTagsPlotStyle(dataframe, colourDict, taxonomy=None):
|
||
|
colours = []
|
||
|
if taxonomy is not None:
|
||
|
for it in dataframe.iterrows():
|
||
|
if it[0].startswith(taxonomy):
|
||
|
colours.append(colourDict[it[0]])
|
||
|
else:
|
||
|
for it in dataframe.iterrows():
|
||
|
colours.append(colourDict[it[0]])
|
||
|
|
||
|
style = Style(background='transparent',
|
||
|
plot_background='#eeeeee',
|
||
|
foreground='#111111',
|
||
|
foreground_strong='#111111',
|
||
|
foreground_subtle='#111111',
|
||
|
opacity='.6',
|
||
|
opacity_hover='.9',
|
||
|
transition='400ms ease-in',
|
||
|
colors=tuple(colours))
|
||
|
return style
|
||
|
|
||
|
# ############### Formatting ################
|
||
|
|
||
|
|
||
|
def eventsListBuildFromList(filename):
|
||
|
with open(filename, 'r') as myfile:
|
||
|
s = myfile.read().replace('\n', '')
|
||
|
decoder = JSONDecoder()
|
||
|
s_len = len(s)
|
||
|
Events = []
|
||
|
end = 0
|
||
|
while end != s_len:
|
||
|
Event, end = decoder.raw_decode(s, idx=end)
|
||
|
Events.append(Event)
|
||
|
data = []
|
||
|
for e in Events:
|
||
|
data.append(pandas.DataFrame.from_dict(e, orient='index'))
|
||
|
Events = pandas.concat(data)
|
||
|
for it in range(Events['attribute_count'].size):
|
||
|
if Events['attribute_count'][it] is None:
|
||
|
Events['attribute_count'][it] = '0'
|
||
|
else:
|
||
|
Events['attribute_count'][it] = int(Events['attribute_count'][it])
|
||
|
Events = Events.set_index('id')
|
||
|
return Events
|
||
|
|
||
|
|
||
|
def eventsListBuildFromArray(jdata):
|
||
|
'''
|
||
|
returns a structure listing all primary events in the sample
|
||
|
'''
|
||
|
data = [pandas.DataFrame.from_dict(e, orient='index') for e in jdata['response']]
|
||
|
events = pandas.concat(data)
|
||
|
events = events.set_index(['id'])
|
||
|
return events
|
||
|
|
||
|
|
||
|
def attributesListBuild(events):
|
||
|
attributes = [pandas.DataFrame(attribute) for attribute in events['Attribute']]
|
||
|
return pandas.concat(attributes)
|
||
|
|
||
|
|
||
|
def tagsListBuild(Events):
|
||
|
Tags = []
|
||
|
if 'Tag' in Events.columns:
|
||
|
for Tag in Events['Tag']:
|
||
|
if type(Tag) is not list:
|
||
|
continue
|
||
|
Tags.append(pandas.DataFrame(Tag))
|
||
|
if Tags:
|
||
|
Tags = pandas.concat(Tags)
|
||
|
columnDate = buildNewColumn(Tags.index, Events['date'])
|
||
|
addColumn(Tags, columnDate, 'date')
|
||
|
index = buildDoubleIndex(Events.index, Tags.index, 'tag')
|
||
|
Tags = Tags.set_index(index)
|
||
|
else:
|
||
|
Tags = None
|
||
|
return Tags
|
||
|
|
||
|
|
||
|
def isTagIn(dataframe, tag):
|
||
|
temp = dataframe[dataframe['name'].str.contains(tag)].index.tolist()
|
||
|
index = []
|
||
|
for i in range(len(temp)):
|
||
|
if temp[i][0] not in index:
|
||
|
index.append(temp[i][0])
|
||
|
return index
|
||
|
|
||
|
|
||
|
def renameColumns(dataframe, namelist):
|
||
|
dataframe.columns = namelist
|
||
|
return dataframe
|
||
|
|
||
|
|
||
|
def replaceNaN(dataframe, value):
|
||
|
return dataframe.fillna(value)
|
||
|
|
||
|
# ############### Basic Stats ################
|
||
|
|
||
|
|
||
|
def getNbitems(dataframe):
|
||
|
return len(dataframe.index)
|
||
|
|
||
|
|
||
|
def getNbAttributePerEventCategoryType(attributes):
|
||
|
return attributes.groupby(['event_id', 'category', 'type']).count()['id']
|
||
|
|
||
|
|
||
|
def getNbOccurenceTags(Tags):
|
||
|
return Tags.groupby('name').count()['id']
|
||
|
|
||
|
|
||
|
# ############### Charts ################
|
||
|
|
||
|
|
||
|
def tagsToLineChart(dataframe, title, dates, colourDict):
|
||
|
style = createTagsPlotStyle(dataframe, colourDict)
|
||
|
line_chart = pygal.Line(x_label_rotation=20, style=style, show_legend=False)
|
||
|
line_chart.title = title
|
||
|
line_chart.x_labels = dates
|
||
|
for it in dataframe.iterrows():
|
||
|
line_chart.add(it[0], it[1].tolist())
|
||
|
line_chart.render_to_file('tags_repartition_plot.svg')
|
||
|
|
||
|
|
||
|
def tagstrendToLineChart(dataframe, title, dates, split, colourDict):
|
||
|
style = createTagsPlotStyle(dataframe, colourDict)
|
||
|
line_chart = pygal.Line(x_label_rotation=20, style=style, show_legend=False)
|
||
|
line_chart.title = title
|
||
|
line_chart.x_labels = dates
|
||
|
xi = numpy.arange(split)
|
||
|
for it in dataframe.iterrows():
|
||
|
slope, intercept, r_value, p_value, std_err = stats.linregress(xi, it[1])
|
||
|
line = slope * xi + intercept
|
||
|
line_chart.add(it[0], line, show_dots=False)
|
||
|
line_chart.render_to_file('tags_repartition_trend_plot.svg')
|
||
|
|
||
|
|
||
|
def tagsToTaxoLineChart(dataframe, title, dates, colourDict, taxonomies, emptyOther):
|
||
|
style = createTagsPlotStyle(dataframe, colourDict)
|
||
|
line_chart = pygal.Line(x_label_rotation=20, style=style)
|
||
|
line_chart.title = title
|
||
|
line_chart.x_labels = dates
|
||
|
for taxonomy in taxonomies:
|
||
|
taxoStyle = createTagsPlotStyle(dataframe, colourDict, taxonomy)
|
||
|
taxo_line_chart = pygal.Line(x_label_rotation=20, style=taxoStyle)
|
||
|
taxo_line_chart.title = title + ': ' + taxonomy
|
||
|
taxo_line_chart.x_labels = dates
|
||
|
for it in dataframe.iterrows():
|
||
|
if it[0].startswith(taxonomy):
|
||
|
taxo_line_chart.add(re.sub(taxonomy + ':', '', it[0]), it[1].tolist())
|
||
|
dataframe = dataframe.drop([it[0]])
|
||
|
taxo_line_chart.render_to_file('plot/' + taxonomy + '.svg')
|
||
|
|
||
|
if not emptyOther:
|
||
|
taxoStyle = createTagsPlotStyle(dataframe, colourDict)
|
||
|
taxo_line_chart = pygal.Line(x_label_rotation=20, style=taxoStyle)
|
||
|
taxo_line_chart.title = title + ': other'
|
||
|
taxo_line_chart.x_labels = dates
|
||
|
for it in dataframe.iterrows():
|
||
|
taxo_line_chart.add(it[0], it[1].tolist())
|
||
|
taxo_line_chart.render_to_file('plot/other.svg')
|
||
|
|
||
|
|
||
|
def tagstrendToTaxoLineChart(dataframe, title, dates, split, colourDict, taxonomies, emptyOther):
|
||
|
style = createTagsPlotStyle(dataframe, colourDict)
|
||
|
line_chart = pygal.Line(x_label_rotation=20, style=style)
|
||
|
line_chart.title = title
|
||
|
line_chart.x_labels = dates
|
||
|
xi = numpy.arange(split)
|
||
|
for taxonomy in taxonomies:
|
||
|
taxoStyle = createTagsPlotStyle(dataframe, colourDict, taxonomy)
|
||
|
taxo_line_chart = pygal.Line(x_label_rotation=20, style=taxoStyle)
|
||
|
taxo_line_chart.title = title + ': ' + taxonomy
|
||
|
taxo_line_chart.x_labels = dates
|
||
|
for it in dataframe.iterrows():
|
||
|
if it[0].startswith(taxonomy):
|
||
|
slope, intercept, r_value, p_value, std_err = stats.linregress(xi, it[1])
|
||
|
line = slope * xi + intercept
|
||
|
taxo_line_chart.add(re.sub(taxonomy + ':', '', it[0]), line, show_dots=False)
|
||
|
dataframe = dataframe.drop([it[0]])
|
||
|
taxo_line_chart.render_to_file('plot/' + taxonomy + '_trend.svg')
|
||
|
|
||
|
if not emptyOther:
|
||
|
taxoStyle = createTagsPlotStyle(dataframe, colourDict)
|
||
|
taxo_line_chart = pygal.Line(x_label_rotation=20, style=taxoStyle)
|
||
|
taxo_line_chart.title = title + ': other'
|
||
|
taxo_line_chart.x_labels = dates
|
||
|
for it in dataframe.iterrows():
|
||
|
slope, intercept, r_value, p_value, std_err = stats.linregress(xi, it[1])
|
||
|
line = slope * xi + intercept
|
||
|
taxo_line_chart.add(it[0], line, show_dots=False)
|
||
|
taxo_line_chart.render_to_file('plot/other_trend.svg')
|
||
|
|
||
|
|
||
|
def tagsToPolyChart(dataframe, split, colourDict, taxonomies, emptyOther, order):
|
||
|
for taxonomy in taxonomies:
|
||
|
for it in dataframe.iterrows():
|
||
|
if it[0].startswith(taxonomy):
|
||
|
points = []
|
||
|
for i in range(split):
|
||
|
points.append((i, it[1][i]))
|
||
|
color = colourDict[it[0]]
|
||
|
label = re.sub(taxonomy + ':', '', it[0])
|
||
|
points = numpy.array(points)
|
||
|
dataframe = dataframe.drop([it[0]])
|
||
|
|
||
|
# get x and y vectors
|
||
|
x = points[:, 0]
|
||
|
y = points[:, 1]
|
||
|
|
||
|
# calculate polynomial
|
||
|
z = numpy.polyfit(x, y, order)
|
||
|
f = numpy.poly1d(z)
|
||
|
|
||
|
# calculate new x's and y's
|
||
|
x_new = numpy.linspace(x[0], x[-1], 50)
|
||
|
y_new = f(x_new)
|
||
|
|
||
|
plt.plot(x, y, '.', color=color)
|
||
|
plt.plot(x_new, y_new, color=color, label=label + 'trend')
|
||
|
|
||
|
pylab.title('Polynomial Fit with Matplotlib: ' + taxonomy)
|
||
|
pylab.legend(loc='center left', bbox_to_anchor=(1, 0.5))
|
||
|
ax = plt.gca()
|
||
|
# ax.set_facecolor((0.898, 0.898, 0.898))
|
||
|
box = ax.get_position()
|
||
|
ax.set_position([box.x0 - 0.01, box.y0, box.width * 0.78, box.height])
|
||
|
fig = plt.gcf()
|
||
|
fig.set_size_inches(20, 15)
|
||
|
fig.savefig('plotlib/' + taxonomy + '.png')
|
||
|
fig.clf()
|
||
|
|
||
|
if not emptyOther:
|
||
|
for it in dataframe.iterrows():
|
||
|
points = []
|
||
|
for i in range(split):
|
||
|
points.append((i, it[1][i]))
|
||
|
|
||
|
color = colourDict[it[0]]
|
||
|
label = it[0]
|
||
|
points = numpy.array(points)
|
||
|
|
||
|
# get x and y vectors
|
||
|
x = points[:, 0]
|
||
|
y = points[:, 1]
|
||
|
|
||
|
# calculate polynomial
|
||
|
z = numpy.polyfit(x, y, order)
|
||
|
f = numpy.poly1d(z)
|
||
|
|
||
|
# calculate new x's and y's
|
||
|
x_new = numpy.linspace(x[0], x[-1], 50)
|
||
|
y_new = f(x_new)
|
||
|
|
||
|
plt.plot(x, y, '.', color=color, label=label)
|
||
|
plt.plot(x_new, y_new, color=color, label=label + 'trend')
|
||
|
|
||
|
pylab.title('Polynomial Fit with Matplotlib: other')
|
||
|
pylab.legend(loc='center left', bbox_to_anchor=(1, 0.5))
|
||
|
ax = plt.gca()
|
||
|
#cax.set_facecolor((0.898, 0.898, 0.898))
|
||
|
box = ax.get_position()
|
||
|
ax.set_position([box.x0 - 0.01, box.y0, box.width * 0.78, box.height])
|
||
|
fig = plt.gcf()
|
||
|
fig.set_size_inches(20, 15)
|
||
|
fig.savefig('plotlib/other.png')
|
||
|
|
||
|
|
||
|
def createVisualisation(taxonomies):
|
||
|
chain = '<!DOCTYPE html>\n<html>\n\t<head>\n\t\t<link rel="stylesheet" href="style2.css">\n\t</head>\n\t<body>'
|
||
|
chain = chain + '<table>'
|
||
|
for taxonomy in taxonomies:
|
||
|
chain = chain + '<tr><td><object type="image/svg+xml" data="plot\\' + taxonomy + '.svg"></object></td><td><img src="plotlib\\' + taxonomy + '.png" alt="graph" /></td><td><object type="image/svg+xml" data="plot\\' + taxonomy + '_trend.svg"></object></td></tr>\n'
|
||
|
|
||
|
chain = chain + '<tr><td><object type="image/svg+xml" data="plot\other.svg"></object></td><td><img src="plotlib\other.png" alt="graph" /></td><td><object type="image/svg+xml" data="plot\other_trend.svg"></object></td></tr>\n'
|
||
|
chain = chain + '</table>'
|
||
|
chain = chain + '\n\t</body>\n</html>'
|
||
|
|
||
|
with open('test_tags_trend.html', 'w') as target:
|
||
|
target.write(chain)
|