#!/usr/bin/env python3 # -*- coding: utf-8 -*- from pymisp.defaultobjects import AbstractMISPObjectGenerator import os from io import BytesIO from hashlib import md5, sha1, sha256, sha512 import math from collections import Counter import warnings try: import pydeep HAS_PYDEEP = True except ImportError: HAS_PYDEEP = False try: import magic HAS_MAGIC = True except ImportError: HAS_MAGIC = False class FileObject(AbstractMISPObjectGenerator): def __init__(self, filepath=None, pseudofile=None, filename=None): if not HAS_PYDEEP: warnings.warn("Please install pydeep: pip install git+https://github.com/kbandla/pydeep.git") if not HAS_MAGIC: warnings.warn("Please install python-magic: pip install python-magic.") if filepath: self.filepath = filepath self.filename = os.path.basename(self.filepath) with open(filepath, 'rb') as f: self.pseudofile = BytesIO(f.read()) elif pseudofile and isinstance(pseudofile, BytesIO): # WARNING: lief.parse requires a path self.filepath = None self.pseudofile = pseudofile self.filename = filename else: raise Exception('File buffer (BytesIO) or a path is required.') # PY3 way: # super().__init__('file') super(FileObject, self).__init__('file') self.data = self.pseudofile.getvalue() self.generate_attributes() def generate_attributes(self): self.add_attribute('filename', value=self.filename) size = self.add_attribute('size-in-bytes', value=len(self.data)) if int(size.value) > 0: self.add_attribute('entropy', value=self.__entropy_H(self.data)) self.add_attribute('md5', value=md5(self.data).hexdigest()) self.add_attribute('sha1', value=sha1(self.data).hexdigest()) self.add_attribute('sha256', value=sha256(self.data).hexdigest()) self.add_attribute('sha512', value=sha512(self.data).hexdigest()) self.add_attribute('malware-sample', value=self.filename, data=self.pseudofile) if HAS_MAGIC: self.add_attribute('mimetype', value=magic.from_buffer(self.data)) if HAS_PYDEEP: self.add_attribute('ssdeep', value=pydeep.hash_buf(self.data).decode()) def __entropy_H(self, data): """Calculate the entropy of a chunk of data.""" # NOTE: copy of the entropy function from pefile if len(data) == 0: return 0.0 occurences = Counter(bytearray(data)) entropy = 0 for x in occurences.values(): p_x = float(x) / len(data) entropy -= p_x * math.log(p_x, 2) return entropy