cti-python-stix2/stix2/equivalence/patterns/__init__.py

116 lines
3.9 KiB
Python
Raw Normal View History

import stix2
from stix2.equivalence.patterns.compare.observation import (
2020-08-13 23:44:42 +02:00
observation_expression_cmp,
)
from stix2.equivalence.patterns.transform import (
ChainTransformer, SettleTransformer,
)
from stix2.equivalence.patterns.transform.observation import (
2020-08-13 23:44:42 +02:00
AbsorptionTransformer, CanonicalizeComparisonExpressionsTransformer,
DNFTransformer, FlattenTransformer, OrderDedupeTransformer,
)
2020-08-13 23:44:42 +02:00
import stix2.pattern_visitor
# Lazy-initialize
_pattern_canonicalizer = None
def _get_pattern_canonicalizer():
"""
Get a canonicalization transformer for STIX patterns.
:return: The transformer
"""
# The transformers are either stateless or contain no state which changes
# with each use. So we can setup the transformers once and keep reusing
# them.
global _pattern_canonicalizer
if not _pattern_canonicalizer:
canonicalize_comp_expr = \
CanonicalizeComparisonExpressionsTransformer()
obs_expr_flatten = FlattenTransformer()
obs_expr_order = OrderDedupeTransformer()
obs_expr_absorb = AbsorptionTransformer()
obs_simplify = ChainTransformer(
2020-08-13 23:44:42 +02:00
obs_expr_flatten, obs_expr_order, obs_expr_absorb,
)
obs_settle_simplify = SettleTransformer(obs_simplify)
obs_dnf = DNFTransformer()
_pattern_canonicalizer = ChainTransformer(
canonicalize_comp_expr,
2020-08-13 23:44:42 +02:00
obs_settle_simplify, obs_dnf, obs_settle_simplify,
)
return _pattern_canonicalizer
def equivalent_patterns(pattern1, pattern2, stix_version=stix2.DEFAULT_VERSION):
"""
Determine whether two STIX patterns are semantically equivalent.
:param pattern1: The first STIX pattern
:param pattern2: The second STIX pattern
:param stix_version: The STIX version to use for pattern parsing, as a
string ("2.0", "2.1", etc). Defaults to library-wide default version.
:return: True if the patterns are semantically equivalent; False if not
"""
patt_ast1 = stix2.pattern_visitor.create_pattern_object(
pattern1, version=stix_version,
)
patt_ast2 = stix2.pattern_visitor.create_pattern_object(
pattern2, version=stix_version,
)
pattern_canonicalizer = _get_pattern_canonicalizer()
canon_patt1, _ = pattern_canonicalizer.transform(patt_ast1)
canon_patt2, _ = pattern_canonicalizer.transform(patt_ast2)
result = observation_expression_cmp(canon_patt1, canon_patt2)
return result == 0
def find_equivalent_patterns(
search_pattern, patterns, stix_version=stix2.DEFAULT_VERSION,
):
"""
Find patterns from a sequence which are equivalent to a given pattern.
This is more efficient than using equivalent_patterns() in a loop, because
it doesn't re-canonicalize the search pattern over and over. This works
on an input iterable and is implemented as a generator of matches. So you
can "stream" patterns in and matching patterns will be streamed out.
:param search_pattern: A search pattern as a string
:param patterns: An iterable over patterns as strings
:param stix_version: The STIX version to use for pattern parsing, as a
string ("2.0", "2.1", etc). Defaults to library-wide default version.
:return: A generator iterator producing the semantically equivalent
patterns
"""
search_pattern_ast = stix2.pattern_visitor.create_pattern_object(
search_pattern, version=stix_version,
)
pattern_canonicalizer = _get_pattern_canonicalizer()
canon_search_pattern_ast, _ = pattern_canonicalizer.transform(
2020-08-13 23:44:42 +02:00
search_pattern_ast,
)
for pattern in patterns:
pattern_ast = stix2.pattern_visitor.create_pattern_object(
pattern, version=stix_version,
)
canon_pattern_ast, _ = pattern_canonicalizer.transform(pattern_ast)
result = observation_expression_cmp(
2020-08-13 23:44:42 +02:00
canon_search_pattern_ast, canon_pattern_ast,
)
if result == 0:
yield pattern