resolve issues with graph similarity
- new methods for graph equivalence and similarity - remove sorting and len comparisons - rename some variablespull/1/head
parent
489970718f
commit
02b076b3bb
|
@ -1,21 +1,62 @@
|
|||
"""Python APIs for STIX 2 Graph-based Semantic Equivalence."""
|
||||
import collections
|
||||
import itertools
|
||||
"""Python APIs for STIX 2 Graph-based Semantic Equivalence and Similarity."""
|
||||
import logging
|
||||
|
||||
from ..object import (
|
||||
WEIGHTS, exact_match, list_reference_check, partial_string_based,
|
||||
partial_timestamp_based, reference_check, object_similarity,
|
||||
partial_timestamp_based, reference_check, object_similarity, object_pairs, bucket_per_type
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def graph_equivalence(ds1, ds2, prop_scores={}, threshold=70, **weight_dict):
|
||||
"""This method returns a true/false value if two graphs are semantically equivalent.
|
||||
Internally, it calls the graph_similarity function and compares it against the given
|
||||
threshold value.
|
||||
|
||||
Args:
|
||||
ds1: A DataStore object instance representing your graph
|
||||
ds2: A DataStore object instance representing your graph
|
||||
prop_scores: A dictionary that can hold individual property scores,
|
||||
weights, contributing score, matching score and sum of weights.
|
||||
threshold: A numerical value between 0 and 100 to determine the minimum
|
||||
score to result in successfully calling both graphs equivalent. This
|
||||
value can be tuned.
|
||||
weight_dict: A dictionary that can be used to override settings
|
||||
in the similarity process
|
||||
|
||||
Returns:
|
||||
bool: True if the result of the graph similarity is greater than or equal to
|
||||
the threshold value. False otherwise.
|
||||
|
||||
Warning:
|
||||
Object types need to have property weights defined for the similarity process.
|
||||
Otherwise, those objects will not influence the final score. The WEIGHTS
|
||||
dictionary under `stix2.equivalence.graph` can give you an idea on how to add
|
||||
new entries and pass them via the `weight_dict` argument. Similarly, the values
|
||||
or methods can be fine tuned for a particular use case.
|
||||
|
||||
Note:
|
||||
Default weight_dict:
|
||||
|
||||
.. include:: ../../graph_default_sem_eq_weights.rst
|
||||
|
||||
Note:
|
||||
This implementation follows the Semantic Equivalence Committee Note.
|
||||
see `the Committee Note <link here>`__.
|
||||
|
||||
"""
|
||||
similarity_result = graph_similarity(ds1, ds2, prop_scores, **weight_dict)
|
||||
if similarity_result >= threshold:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def graph_similarity(ds1, ds2, prop_scores={}, **weight_dict):
|
||||
"""This method verifies if two graphs are semantically equivalent.
|
||||
"""This method returns a similarity score for two given graphs.
|
||||
Each DataStore can contain a connected or disconnected graph and the
|
||||
final result is weighted over the amount of objects we managed to compare.
|
||||
This approach builds on top of the object-based semantic equivalence process
|
||||
This approach builds on top of the object-based similarity process
|
||||
and each comparison can return a value between 0 and 100.
|
||||
|
||||
Args:
|
||||
|
@ -24,20 +65,20 @@ def graph_similarity(ds1, ds2, prop_scores={}, **weight_dict):
|
|||
prop_scores: A dictionary that can hold individual property scores,
|
||||
weights, contributing score, matching score and sum of weights.
|
||||
weight_dict: A dictionary that can be used to override settings
|
||||
in the semantic equivalence process
|
||||
in the similarity process
|
||||
|
||||
Returns:
|
||||
float: A number between 0.0 and 100.0 as a measurement of equivalence.
|
||||
float: A number between 0.0 and 100.0 as a measurement of similarity.
|
||||
|
||||
Warning:
|
||||
Object types need to have property weights defined for the equivalence process.
|
||||
Object types need to have property weights defined for the similarity process.
|
||||
Otherwise, those objects will not influence the final score. The WEIGHTS
|
||||
dictionary under `stix2.equivalence.graph` can give you an idea on how to add
|
||||
new entries and pass them via the `weight_dict` argument. Similarly, the values
|
||||
or methods can be fine tuned for a particular use case.
|
||||
|
||||
Note:
|
||||
Default weights_dict:
|
||||
Default weight_dict:
|
||||
|
||||
.. include:: ../../graph_default_sem_eq_weights.rst
|
||||
|
||||
|
@ -47,12 +88,14 @@ def graph_similarity(ds1, ds2, prop_scores={}, **weight_dict):
|
|||
|
||||
"""
|
||||
results = {}
|
||||
equivalence_score = 0
|
||||
similarity_score = 0
|
||||
weights = GRAPH_WEIGHTS.copy()
|
||||
|
||||
if weight_dict:
|
||||
weights.update(weight_dict)
|
||||
|
||||
if weights["_internal"]["max_depth"] <= 0:
|
||||
raise ValueError("weight_dict['_internal']['max_depth'] must be greater than 0")
|
||||
depth = weights["_internal"]["max_depth"]
|
||||
|
||||
graph1 = bucket_per_type(ds1.query([]))
|
||||
|
@ -64,60 +107,46 @@ def graph_similarity(ds1, ds2, prop_scores={}, **weight_dict):
|
|||
iprop_score2 = {}
|
||||
object1_id = object1["id"]
|
||||
object2_id = object2["id"]
|
||||
|
||||
weights["_internal"]["max_depth"] = depth
|
||||
weights["_internal"]["ds1"] = ds1
|
||||
weights["_internal"]["ds2"] = ds2
|
||||
result1 = object_similarity(object1, object2, iprop_score1, **weights)
|
||||
|
||||
weights["_internal"]["max_depth"] = depth
|
||||
weights["_internal"]["ds1"] = ds2
|
||||
weights["_internal"]["ds2"] = ds1
|
||||
result2 = object_similarity(object2, object1, iprop_score2, **weights)
|
||||
|
||||
if object1_id not in results:
|
||||
results[object1_id] = {"lhs": object1["id"], "rhs": object2["id"], "prop_score": iprop_score1, "value": result1}
|
||||
results[object1_id] = {"lhs": object1_id, "rhs": object2_id, "prop_score": iprop_score1, "value": result1}
|
||||
elif result1 > results[object1_id]["value"]:
|
||||
results[object1_id] = {"lhs": object1["id"], "rhs": object2["id"], "prop_score": iprop_score1, "value": result1}
|
||||
results[object1_id] = {"lhs": object1_id, "rhs": object2_id, "prop_score": iprop_score1, "value": result1}
|
||||
|
||||
if object2_id not in results:
|
||||
results[object2_id] = {"lhs": object2["id"], "rhs": object1["id"], "prop_score": iprop_score2, "value": result2}
|
||||
elif result1 > results[object2_id]["value"]:
|
||||
results[object2_id] = {"lhs": object2["id"], "rhs": object1["id"], "prop_score": iprop_score2, "value": result2}
|
||||
results[object2_id] = {"lhs": object2_id, "rhs": object1_id, "prop_score": iprop_score2, "value": result2}
|
||||
elif result2 > results[object2_id]["value"]:
|
||||
results[object2_id] = {"lhs": object2_id, "rhs": object1_id, "prop_score": iprop_score2, "value": result2}
|
||||
|
||||
matching_score = sum(x["value"] for x in results.values())
|
||||
sum_weights = len(results)
|
||||
if sum_weights > 0:
|
||||
equivalence_score = matching_score / sum_weights
|
||||
len_pairs = len(results)
|
||||
if len_pairs > 0:
|
||||
similarity_score = matching_score / len_pairs
|
||||
|
||||
prop_scores["matching_score"] = matching_score
|
||||
prop_scores["sum_weights"] = sum_weights
|
||||
prop_scores["len_pairs"] = len_pairs
|
||||
prop_scores["summary"] = results
|
||||
|
||||
logger.debug(
|
||||
"DONE\t\tSUM_WEIGHT: %.2f\tMATCHING_SCORE: %.2f\t SCORE: %.2f",
|
||||
sum_weights,
|
||||
"DONE\t\tSUM_PAIRS: %.2f\tMATCHING_SCORE: %.2f\t SIMILARITY_SCORE: %.2f",
|
||||
len_pairs,
|
||||
matching_score,
|
||||
equivalence_score,
|
||||
similarity_score,
|
||||
)
|
||||
return equivalence_score
|
||||
return similarity_score
|
||||
|
||||
|
||||
def bucket_per_type(g):
|
||||
buckets = collections.defaultdict(list)
|
||||
[buckets[obj["type"]].append(obj) for obj in g]
|
||||
return buckets
|
||||
|
||||
|
||||
def object_pairs(g1, g2, w):
|
||||
types_in_common = set(g1.keys()).intersection(g2.keys())
|
||||
testable_types = types_in_common.intersection(w.keys())
|
||||
|
||||
return itertools.chain.from_iterable(
|
||||
itertools.product(g1[stix_type], g2[stix_type])
|
||||
for stix_type in testable_types
|
||||
)
|
||||
|
||||
|
||||
# default weights used for the graph semantic equivalence process
|
||||
# default weights used for the graph similarity process
|
||||
GRAPH_WEIGHTS = WEIGHTS.copy()
|
||||
GRAPH_WEIGHTS.update({
|
||||
"grouping": {
|
||||
|
|
|
@ -1,4 +1,6 @@
|
|||
"""Python APIs for STIX 2 Object-based Semantic Equivalence."""
|
||||
"""Python APIs for STIX 2 Object-based Semantic Equivalence and Similarity."""
|
||||
import collections
|
||||
import itertools
|
||||
import logging
|
||||
import time
|
||||
|
||||
|
@ -9,9 +11,52 @@ from ..pattern import equivalent_patterns
|
|||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def object_equivalence(obj1, obj2, prop_scores={}, threshold=70, **weight_dict):
|
||||
"""This method returns a true/false value if two objects are semantically equivalent.
|
||||
Internally, it calls the object_similarity function and compares it against the given
|
||||
threshold value.
|
||||
|
||||
Args:
|
||||
obj1: A stix2 object instance
|
||||
obj2: A stix2 object instance
|
||||
prop_scores: A dictionary that can hold individual property scores,
|
||||
weights, contributing score, matching score and sum of weights.
|
||||
threshold: A numerical value between 0 and 100 to determine the minimum
|
||||
score to result in successfully calling both objects equivalent. This
|
||||
value can be tuned.
|
||||
weight_dict: A dictionary that can be used to override settings
|
||||
in the semantic equivalence process
|
||||
|
||||
Returns:
|
||||
bool: True if the result of the object similarity is greater than or equal to
|
||||
the threshold value. False otherwise.
|
||||
|
||||
Warning:
|
||||
Object types need to have property weights defined for the similarity process.
|
||||
Otherwise, those objects will not influence the final score. The WEIGHTS
|
||||
dictionary under `stix2.equivalence.object` can give you an idea on how to add
|
||||
new entries and pass them via the `weight_dict` argument. Similarly, the values
|
||||
or methods can be fine tuned for a particular use case.
|
||||
|
||||
Note:
|
||||
Default weight_dict:
|
||||
|
||||
.. include:: ../../object_default_sem_eq_weights.rst
|
||||
|
||||
Note:
|
||||
This implementation follows the Semantic Equivalence Committee Note.
|
||||
see `the Committee Note <link here>`__.
|
||||
|
||||
"""
|
||||
similarity_result = object_similarity(obj1, obj2, prop_scores, **weight_dict)
|
||||
if similarity_result >= threshold:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def object_similarity(obj1, obj2, prop_scores={}, **weight_dict):
|
||||
"""This method verifies if two objects of the same type are
|
||||
semantically equivalent.
|
||||
"""This method returns a measure of similarity depending on how
|
||||
similar the two objects are.
|
||||
|
||||
Args:
|
||||
obj1: A stix2 object instance
|
||||
|
@ -22,17 +67,17 @@ def object_similarity(obj1, obj2, prop_scores={}, **weight_dict):
|
|||
in the semantic equivalence process
|
||||
|
||||
Returns:
|
||||
float: A number between 0.0 and 100.0 as a measurement of equivalence.
|
||||
float: A number between 0.0 and 100.0 as a measurement of similarity.
|
||||
|
||||
Warning:
|
||||
Object types need to have property weights defined for the equivalence process.
|
||||
Object types need to have property weights defined for the similarity process.
|
||||
Otherwise, those objects will not influence the final score. The WEIGHTS
|
||||
dictionary under `stix2.equivalence.object` can give you an idea on how to add
|
||||
new entries and pass them via the `weight_dict` argument. Similarly, the values
|
||||
or methods can be fine tuned for a particular use case.
|
||||
|
||||
Note:
|
||||
Default weights_dict:
|
||||
Default weight_dict:
|
||||
|
||||
.. include:: ../../object_default_sem_eq_weights.rst
|
||||
|
||||
|
@ -352,34 +397,31 @@ def list_reference_check(refs1, refs2, ds1, ds2, **weights):
|
|||
The score influences the objects containing these references. The result is
|
||||
weighted on the amount of unique objects that could 1) be de-referenced 2) """
|
||||
results = {}
|
||||
if len(refs1) >= len(refs2):
|
||||
l1 = refs1
|
||||
l2 = refs2
|
||||
b1 = ds1
|
||||
b2 = ds2
|
||||
else:
|
||||
l1 = refs2
|
||||
l2 = refs1
|
||||
b1 = ds2
|
||||
b2 = ds1
|
||||
|
||||
l1.sort()
|
||||
l2.sort()
|
||||
pairs = object_pairs(
|
||||
bucket_per_type(refs1, "id-split"),
|
||||
bucket_per_type(refs2, "id-split"),
|
||||
weights
|
||||
)
|
||||
|
||||
for ref1 in l1:
|
||||
for ref2 in l2:
|
||||
type1, type2 = ref1.split("--")[0], ref2.split("--")[0]
|
||||
if type1 == type2:
|
||||
score = reference_check(ref1, ref2, b1, b2, **weights) * 100.0
|
||||
for ref1, ref2 in pairs:
|
||||
type1, type2 = ref1.split("--")[0], ref2.split("--")[0]
|
||||
if type1 == type2:
|
||||
score = reference_check(ref1, ref2, ds1, ds2, **weights)
|
||||
|
||||
if ref1 not in results:
|
||||
results[ref1] = {"matched": ref2, "value": score}
|
||||
elif score > results[ref1]["value"]:
|
||||
results[ref1] = {"matched": ref2, "value": score}
|
||||
if ref1 not in results:
|
||||
results[ref1] = {"matched": ref2, "value": score}
|
||||
elif score > results[ref1]["value"]:
|
||||
results[ref1] = {"matched": ref2, "value": score}
|
||||
|
||||
if ref2 not in results:
|
||||
results[ref2] = {"matched": ref1, "value": score}
|
||||
elif score > results[ref2]["value"]:
|
||||
results[ref2] = {"matched": ref1, "value": score}
|
||||
|
||||
result = 0.0
|
||||
total_sum = sum(x["value"] for x in results.values())
|
||||
max_score = len(results) * 100.0
|
||||
max_score = len(results)
|
||||
|
||||
if max_score > 0:
|
||||
result = total_sum / max_score
|
||||
|
@ -391,7 +433,26 @@ def list_reference_check(refs1, refs2, ds1, ds2, **weights):
|
|||
return result
|
||||
|
||||
|
||||
# default weights used for the semantic equivalence process
|
||||
def bucket_per_type(g, mode="type"):
|
||||
buckets = collections.defaultdict(list)
|
||||
if mode == "type":
|
||||
[buckets[obj["type"]].append(obj) for obj in g]
|
||||
elif mode == "id-split":
|
||||
[buckets[obj.split("--")[0]].append(obj) for obj in g]
|
||||
return buckets
|
||||
|
||||
|
||||
def object_pairs(g1, g2, w):
|
||||
types_in_common = set(g1.keys()).intersection(g2.keys())
|
||||
testable_types = types_in_common.intersection(w.keys())
|
||||
|
||||
return itertools.chain.from_iterable(
|
||||
itertools.product(g1[stix_type], g2[stix_type])
|
||||
for stix_type in testable_types
|
||||
)
|
||||
|
||||
|
||||
# default weights used for the similarity process
|
||||
WEIGHTS = {
|
||||
"attack-pattern": {
|
||||
"name": (30, partial_string_based),
|
||||
|
|
Loading…
Reference in New Issue