wrote all default weights, actually computing the equivalence score

logging for unsupported objects, finished implementing some methods. Missing to implement patterning.
master
Emmanuelle Vargas-Gonzalez 2019-09-10 15:04:07 -04:00
parent 93aa709b68
commit 6fa77adfe3
1 changed files with 205 additions and 33 deletions

View File

@ -1,10 +1,14 @@
"""Python STIX2 Environment API."""
import copy
import logging
import math
from .core import parse as _parse
from .datastore import CompositeDataSource, DataStoreMixin
logger = logging.getLogger(__name__)
class ObjectFactory(object):
"""Easily create STIX objects with default values for certain properties.
@ -187,13 +191,16 @@ class Environment(DataStoreMixin):
else:
return None
def semantically_equivalent(self, obj1, obj2):
@staticmethod
def semantically_equivalent(obj1, obj2, **weight_dict):
"""This method is meant to verify if two objects of the same type are
semantically equivalent.
Args:
obj1: A stix2 object instance
obj2: A stix2 object instance
weight_dict: A dictionary that can be used to override settings
in the semantic equivalence process
Returns:
float: A number between 0.0 and 1.0 as a measurement of equivalence.
@ -206,7 +213,58 @@ class Environment(DataStoreMixin):
see `the Committee Note <link here>`__.
"""
equivalence_score = 0.0
# default weights used for the semantic equivalence process
weigths = {
"attack-pattern": {
"name": 30,
"external_references": 70,
},
"campaign": {
"name": 60,
"aliases": 40,
},
"identity": {
"name": 60,
"identity_class": 20,
"sectors": 20,
},
"indicator": {
"indicator_types": 15,
"pattern": 80,
"valid_from": 5,
},
"location": {
"longitude_latitude": 34,
"region": 33,
"country": 33,
},
"malware": {
"malware_types": 20,
"name": 80,
},
"threat-actor": {
"name": 60,
"threat_actor_types": 20,
"aliases": 20,
},
"tool": {
"tool_types": 20,
"name": 80,
},
"vulnerability": {
"name": 30,
"external_references": 70,
},
"_internal": {
"tdelta": 1,
},
}
if weight_dict:
weigths.update(weight_dict)
matching_score = 0.0
sum_weights = 0.0
type1, type2 = obj1["type"], obj2["type"]
if type1 != type2:
@ -217,61 +275,132 @@ class Environment(DataStoreMixin):
if type1 == "attack-pattern":
if _check_property_present("name", obj1, obj2):
_partial_string_based(obj1["name"], obj2["name"])
w = weigths["attack-pattern"]["name"]
sum_weights += w
matching_score += w * _partial_string_based(obj1["name"], obj2["name"])
if _check_property_present("external_references", obj1, obj2):
_partial_external_reference_based(obj1["external_references"], obj2["external_references"])
w = weigths["attack-pattern"]["external_references"]
sum_weights += w
matching_score += (
w *
_partial_external_reference_based(obj1["external_references"], obj2["external_references"])
)
elif type1 == "campaign":
if _check_property_present("name", obj1, obj2):
_partial_string_based(obj1["name"], obj2["name"])
w = weigths["campaign"]["name"]
sum_weights += w
matching_score += w * _partial_string_based(obj1["name"], obj2["name"])
if _check_property_present("aliases", obj1, obj2):
_partial_list_based(obj1["aliases"], obj2["aliases"])
w = weigths["campaign"]["aliases"]
sum_weights += w
matching_score += w * _partial_list_based(obj1["aliases"], obj2["aliases"])
elif type1 == "course-of-action":
pass
logger.warning("%s type is not supported for semantic equivalence", type1)
elif type1 == "identity":
if _check_property_present("name", obj1, obj2):
_exact_match(obj1["name"], obj2["name"])
w = weigths["identity"]["name"]
sum_weights += w
matching_score += w * _exact_match(obj1["name"], obj2["name"])
if _check_property_present("identity_class", obj1, obj2):
_exact_match(obj1["identity_class"], obj2["identity_class"])
w = weigths["identity"]["identity_class"]
sum_weights += w
matching_score += w * _exact_match(obj1["identity_class"], obj2["identity_class"])
if _check_property_present("sectors", obj1, obj2):
_partial_list_based(obj1["sectors"], obj2["sectors"])
w = weigths["identity"]["sectors"]
sum_weights += w
matching_score += w * _partial_list_based(obj1["sectors"], obj2["sectors"])
elif type1 == "indicator":
if _check_property_present("indicator_types", obj1, obj2):
_partial_list_based(obj1["indicator_types"], obj2["indicator_types"])
w = weigths["indicator"]["indicator_types"]
sum_weights += w
matching_score += w * _partial_list_based(obj1["indicator_types"], obj2["indicator_types"])
if _check_property_present("pattern", obj1, obj2):
pass # TODO: needs to be done
w = weigths["indicator"]["pattern"]
sum_weights += w
matching_score += w * _custom_pattern_based(obj1["pattern"], obj2["pattern"])
if _check_property_present("valid_from", obj1, obj2):
_partial_timestamp_based(obj1["valid_from"], obj2["valid_from"])
w = weigths["indicator"]["valid_from"]
sum_weights += w
matching_score += (
w *
_partial_timestamp_based(obj1["valid_from"], obj2["valid_from"], weigths["_internal"]["tdelta"])
)
elif type1 == "instrusion-set":
pass
logger.warning("%s type is not supported for semantic equivalence", type1)
elif type1 == "location":
pass
if _check_property_present("latitude", obj1, obj2) and _check_property_present("longitude", obj1, obj2):
w = weigths["location"]["longitude_latitude"]
sum_weights += w
matching_score += (
w *
_partial_location_distance(obj1["latitude"], obj1["longitude"], obj2["latitude"], obj2["longitude"])
)
if _check_property_present("region", obj1, obj2):
w = weigths["location"]["region"]
sum_weights += w
matching_score += w * _exact_match(obj1["region"], obj2["region"])
if _check_property_present("country", obj1, obj2):
w = weigths["location"]["country"]
sum_weights += w
matching_score += w * _exact_match(obj1["country"], obj2["country"])
elif type1 == "malware":
if _check_property_present("malware_types", obj1, obj2):
_partial_list_based(obj1["malware_types"], obj2["malware_types"])
w = weigths["malware"]["malware_types"]
sum_weights += w
matching_score += w * _partial_list_based(obj1["malware_types"], obj2["malware_types"])
if _check_property_present("name", obj1, obj2):
_partial_string_based(obj1["name"], obj2["name"])
w = weigths["malware"]["name"]
sum_weights += w
matching_score += w * _partial_string_based(obj1["name"], obj2["name"])
elif type1 == "observed-data":
pass
logger.warning("%s type is not supported for semantic equivalence", type1)
elif type1 == "report":
pass
logger.warning("%s type is not supported for semantic equivalence", type1)
elif type1 == "threat-actor":
if _check_property_present("name", obj1, obj2):
_partial_string_based(obj1["name"], obj2["name"])
w = weigths["threat-actor"]["name"]
sum_weights += w
matching_score += w * _partial_string_based(obj1["name"], obj2["name"])
if _check_property_present("threat_actor_types", obj1, obj2):
_partial_list_based(obj1["threat_actor_types"], obj2["threat_actor_types"])
w = weigths["threat-actor"]["threat_actor_types"]
sum_weights += w
matching_score += w * _partial_list_based(obj1["threat_actor_types"], obj2["threat_actor_types"])
if _check_property_present("aliases", obj1, obj2):
_partial_list_based(obj1["aliases"], obj2["aliases"])
w = weigths["threat-actor"]["aliases"]
sum_weights += w
matching_score += w * _partial_list_based(obj1["aliases"], obj2["aliases"])
elif type1 == "tool":
if _check_property_present("tool_types", obj1, obj2):
_partial_list_based(obj1["tool_types"], obj2["tool_types"])
w = weigths["tool"]["tool_types"]
sum_weights += w
matching_score += w * _partial_list_based(obj1["tool_types"], obj2["tool_types"])
if _check_property_present("name", obj1, obj2):
_partial_string_based(obj1["name"], obj2["name"])
w = weigths["tool"]["name"]
sum_weights += w
matching_score += w * _partial_string_based(obj1["name"], obj2["name"])
elif type1 == "vulnerability":
if _check_property_present("name", obj1, obj2):
_partial_string_based(obj1["name"], obj2["name"])
w = weigths["vulnerability"]["name"]
sum_weights += w
matching_score += w * _partial_string_based(obj1["name"], obj2["name"])
if _check_property_present("external_references", obj1, obj2):
_partial_external_reference_based(obj1["external_references"], obj2["external_references"])
# TODO: need to actually calculate the value
w = weigths["vulnerability"]["external_references"]
sum_weights += w
matching_score += w * _partial_external_reference_based(obj1["external_references"], obj2["external_references"])
equivalence_score = (matching_score / sum_weights) * 100.0
return equivalence_score
@ -281,16 +410,15 @@ def _check_property_present(prop, obj1, obj2):
return False
def _partial_timestamp_based(t1, t2):
def _partial_timestamp_based(t1, t2, tdelta):
from .utils import parse_into_datetime
tdelta = 1 # One day...
stix_t1, stix_t2 = parse_into_datetime(t1), parse_into_datetime(t2)
return 1 - min(abs(stix_t1.timestamp() - stix_t2.timestamp()) / (86400 * tdelta), 1)
def _partial_list_based(l1, l2):
l1_set, l2_set = set(l1), set(l2)
return len(l1_set.intersection(l2_set)) / max(len(l1_set), len(l2_set))
return len(l1_set.intersection(l2_set)) / max(len(l1), len(l2))
def _exact_match(val1, val2):
@ -304,9 +432,53 @@ def _partial_string_based(str1, str2):
return distance.get_jaro_distance(str1, str2)
def _custom_pattern_based(pattern1, pattern2):
return 0 # TODO: Needs to be implemented
def _partial_external_reference_based(refs1, refs2):
pass # TODO: needs to be done
allowed = set(("veris", "cve", "capec", "mitre-attack"))
matches = 0
if len(refs1) >= len(refs2):
l1 = refs1
l2 = refs2
else:
l1 = refs2
l2 = refs1
for ext_ref1 in l1:
for ext_ref2 in l2:
sn_match = False
ei_match = False
url_match = False
source_name = None
if _check_property_present("source_name", ext_ref1, ext_ref2):
if ext_ref1["source_name"] == ext_ref2["source_name"]:
source_name = ext_ref1["source_name"]
sn_match = True
if _check_property_present("external_id", ext_ref1, ext_ref2):
if ext_ref1["external_id"] == ext_ref2["external_id"]:
ei_match = True
if _check_property_present("url", ext_ref1, ext_ref2):
if ext_ref1["url"] == ext_ref2["url"]:
url_match = True
# Special case: if source_name is a STIX defined name and either
# external_id or url match then its a perfect match and other entries
# can be ignored.
if sn_match and (ei_match or url_match) and source_name in allowed:
return 1.0
# Regular check. If the source_name (not STIX-defined) or external_id or
# url matches then we consider the entry a match.
if (sn_match or ei_match or url_match) and source_name not in allowed:
matches += 1
return matches / max(len(refs1), len(refs2))
def _partial_location_distance(loc1, loc2):
pass # TODO: needs to be done
def _partial_location_distance(lat1, long1, lat2, long2):
distance = math.sqrt(((lat2 - lat1) ** 2) + ((long2 - long1) ** 2))
return 1 - (distance / 1000.0)