Merge branch 'khdesai-change_logging'

Close #304.
master
Chris Lenk 2019-12-23 17:20:32 -05:00
commit 74eeabab77
7 changed files with 1716 additions and 433 deletions

1
.gitignore vendored
View File

@ -55,6 +55,7 @@ coverage.xml
# Sphinx documentation
docs/_build/
.ipynb_checkpoints
default_sem_eq_weights.rst
# PyBuilder
target/

View File

@ -1,4 +1,5 @@
import datetime
import json
import os
import re
import sys
@ -7,6 +8,7 @@ from six import class_types
from sphinx.ext.autodoc import ClassDocumenter
from stix2.base import _STIXBase
from stix2.environment import WEIGHTS
from stix2.version import __version__
sys.path.insert(0, os.path.abspath('..'))
@ -59,6 +61,14 @@ latex_documents = [
(master_doc, 'stix2.tex', 'stix2 Documentation', 'OASIS', 'manual'),
]
# Add a formatted version of environment.WEIGHTS
default_sem_eq_weights = json.dumps(WEIGHTS, indent=4, default=lambda o: o.__name__)
default_sem_eq_weights = default_sem_eq_weights.replace('\n', '\n ')
default_sem_eq_weights = default_sem_eq_weights.replace(' "', ' ')
default_sem_eq_weights = default_sem_eq_weights.replace('"\n', '\n')
with open('default_sem_eq_weights.rst', 'w') as f:
f.write(".. code-block:: py\n\n {}\n\n".format(default_sem_eq_weights))
def get_property_type(prop):
"""Convert property classname into pretty string name of property.

File diff suppressed because it is too large Load Diff

View File

@ -64,6 +64,6 @@ setup(
},
extras_require={
'taxii': ['taxii2-client'],
'semantic': ['haversine', 'pyjarowinkler'],
'semantic': ['haversine', 'fuzzywuzzy'],
},
)

View File

@ -193,7 +193,7 @@ class Environment(DataStoreMixin):
return None
@staticmethod
def semantically_equivalent(obj1, obj2, **weight_dict):
def semantically_equivalent(obj1, obj2, prop_scores={}, **weight_dict):
"""This method is meant to verify if two objects of the same type are
semantically equivalent.
@ -210,68 +210,17 @@ class Environment(DataStoreMixin):
Course of Action, Intrusion-Set, Observed-Data, Report are not supported
by this implementation. Indicator pattern check is also limited.
Note:
Default weights_dict:
.. include:: ../default_sem_eq_weights.rst
Note:
This implementation follows the Committee Note on semantic equivalence.
see `the Committee Note <link here>`__.
"""
# default weights used for the semantic equivalence process
weights = {
"attack-pattern": {
"name": 30,
"external_references": 70,
"method": _attack_pattern_checks,
},
"campaign": {
"name": 60,
"aliases": 40,
"method": _campaign_checks,
},
"identity": {
"name": 60,
"identity_class": 20,
"sectors": 20,
"method": _identity_checks,
},
"indicator": {
"indicator_types": 15,
"pattern": 80,
"valid_from": 5,
"tdelta": 1, # One day interval
"method": _indicator_checks,
},
"location": {
"longitude_latitude": 34,
"region": 33,
"country": 33,
"threshold": 1000.0,
"method": _location_checks,
},
"malware": {
"malware_types": 20,
"name": 80,
"method": _malware_checks,
},
"threat-actor": {
"name": 60,
"threat_actor_types": 20,
"aliases": 20,
"method": _threat_actor_checks,
},
"tool": {
"tool_types": 20,
"name": 80,
"method": _tool_checks,
},
"vulnerability": {
"name": 30,
"external_references": 70,
"method": _vulnerability_checks,
},
"_internal": {
"ignore_spec_version": False,
},
}
weights = WEIGHTS.copy()
if weight_dict:
weights.update(weight_dict)
@ -286,17 +235,54 @@ class Environment(DataStoreMixin):
raise ValueError('The objects to compare must be of the same spec version!')
try:
method = weights[type1]["method"]
weights[type1]
except KeyError:
logger.warning("'%s' type has no semantic equivalence method to call!", type1)
logger.warning("'%s' type has no 'weights' dict specified & thus no semantic equivalence method to call!", type1)
sum_weights = matching_score = 0
else:
logger.debug("Starting semantic equivalence process between: '%s' and '%s'", obj1["id"], obj2["id"])
matching_score, sum_weights = method(obj1, obj2, **weights[type1])
try:
method = weights[type1]["method"]
except KeyError:
logger.debug("Starting semantic equivalence process between: '%s' and '%s'", obj1["id"], obj2["id"])
matching_score = 0.0
sum_weights = 0.0
for prop in weights[type1]:
if check_property_present(prop, obj1, obj2) or prop == "longitude_latitude":
w = weights[type1][prop][0]
comp_funct = weights[type1][prop][1]
if comp_funct == partial_timestamp_based:
contributing_score = w * comp_funct(obj1[prop], obj2[prop], weights[type1]["tdelta"])
elif comp_funct == partial_location_distance:
threshold = weights[type1]["threshold"]
contributing_score = w * comp_funct(obj1["latitude"], obj1["longitude"], obj2["latitude"], obj2["longitude"], threshold)
else:
contributing_score = w * comp_funct(obj1[prop], obj2[prop])
sum_weights += w
matching_score += contributing_score
prop_scores[prop] = {
"weight": w,
"contributing_score": contributing_score,
}
logger.debug("'%s' check -- weight: %s, contributing score: %s", prop, w, contributing_score)
prop_scores["matching_score"] = matching_score
prop_scores["sum_weights"] = sum_weights
logger.debug("Matching Score: %s, Sum of Weights: %s", matching_score, sum_weights)
else:
logger.debug("Starting semantic equivalence process between: '%s' and '%s'", obj1["id"], obj2["id"])
try:
matching_score, sum_weights = method(obj1, obj2, prop_scores, **weights[type1])
except TypeError:
# method doesn't support detailed output with prop_scores
matching_score, sum_weights = method(obj1, obj2, **weights[type1])
logger.debug("Matching Score: %s, Sum of Weights: %s", matching_score, sum_weights)
if sum_weights <= 0:
return 0
equivalence_score = (matching_score / sum_weights) * 100.0
return equivalence_score
@ -377,10 +363,10 @@ def partial_string_based(str1, str2):
float: Number between 0.0 and 1.0 depending on match criteria.
"""
from pyjarowinkler import distance
result = distance.get_jaro_distance(str1, str2)
from fuzzywuzzy import fuzz
result = fuzz.token_sort_ratio(str1, str2, force_ascii=False)
logger.debug("--\t\tpartial_string_based '%s' '%s'\tresult: '%s'", str1, str2, result)
return result
return result / 100.0
def custom_pattern_based(pattern1, pattern2):
@ -485,207 +471,51 @@ def partial_location_distance(lat1, long1, lat2, long2, threshold):
return result
def _attack_pattern_checks(obj1, obj2, **weights):
matching_score = 0.0
sum_weights = 0.0
if check_property_present("name", obj1, obj2):
w = weights["name"]
contributing_score = w * partial_string_based(obj1["name"], obj2["name"])
sum_weights += w
matching_score += contributing_score
logger.debug("'name' check -- weight: %s, contributing score: %s", w, contributing_score)
if check_property_present("external_references", obj1, obj2):
w = weights["external_references"]
contributing_score = (
w * partial_external_reference_based(obj1["external_references"], obj2["external_references"])
)
sum_weights += w
matching_score += contributing_score
logger.debug("'external_references' check -- weight: %s, contributing score: %s", w, contributing_score)
logger.debug("Matching Score: %s, Sum of Weights: %s", matching_score, sum_weights)
return matching_score, sum_weights
def _campaign_checks(obj1, obj2, **weights):
matching_score = 0.0
sum_weights = 0.0
if check_property_present("name", obj1, obj2):
w = weights["name"]
contributing_score = w * partial_string_based(obj1["name"], obj2["name"])
sum_weights += w
matching_score += contributing_score
logger.debug("'name' check -- weight: %s, contributing score: %s", w, contributing_score)
if check_property_present("aliases", obj1, obj2):
w = weights["aliases"]
contributing_score = w * partial_list_based(obj1["aliases"], obj2["aliases"])
sum_weights += w
matching_score += contributing_score
logger.debug("'aliases' check -- weight: %s, contributing score: %s", w, contributing_score)
logger.debug("Matching Score: %s, Sum of Weights: %s", matching_score, sum_weights)
return matching_score, sum_weights
def _identity_checks(obj1, obj2, **weights):
matching_score = 0.0
sum_weights = 0.0
if check_property_present("name", obj1, obj2):
w = weights["name"]
contributing_score = w * exact_match(obj1["name"], obj2["name"])
sum_weights += w
matching_score += contributing_score
logger.debug("'name' check -- weight: %s, contributing score: %s", w, contributing_score)
if check_property_present("identity_class", obj1, obj2):
w = weights["identity_class"]
contributing_score = w * exact_match(obj1["identity_class"], obj2["identity_class"])
sum_weights += w
matching_score += contributing_score
logger.debug("'identity_class' check -- weight: %s, contributing score: %s", w, contributing_score)
if check_property_present("sectors", obj1, obj2):
w = weights["sectors"]
contributing_score = w * partial_list_based(obj1["sectors"], obj2["sectors"])
sum_weights += w
matching_score += contributing_score
logger.debug("'sectors' check -- weight: %s, contributing score: %s", w, contributing_score)
logger.debug("Matching Score: %s, Sum of Weights: %s", matching_score, sum_weights)
return matching_score, sum_weights
def _indicator_checks(obj1, obj2, **weights):
matching_score = 0.0
sum_weights = 0.0
if check_property_present("indicator_types", obj1, obj2):
w = weights["indicator_types"]
contributing_score = w * partial_list_based(obj1["indicator_types"], obj2["indicator_types"])
sum_weights += w
matching_score += contributing_score
logger.debug("'indicator_types' check -- weight: %s, contributing score: %s", w, contributing_score)
if check_property_present("pattern", obj1, obj2):
w = weights["pattern"]
contributing_score = w * custom_pattern_based(obj1["pattern"], obj2["pattern"])
sum_weights += w
matching_score += contributing_score
logger.debug("'pattern' check -- weight: %s, contributing score: %s", w, contributing_score)
if check_property_present("valid_from", obj1, obj2):
w = weights["valid_from"]
contributing_score = (
w *
partial_timestamp_based(obj1["valid_from"], obj2["valid_from"], weights["tdelta"])
)
sum_weights += w
matching_score += contributing_score
logger.debug("'valid_from' check -- weight: %s, contributing score: %s", w, contributing_score)
logger.debug("Matching Score: %s, Sum of Weights: %s", matching_score, sum_weights)
return matching_score, sum_weights
def _location_checks(obj1, obj2, **weights):
matching_score = 0.0
sum_weights = 0.0
if check_property_present("latitude", obj1, obj2) and check_property_present("longitude", obj1, obj2):
w = weights["longitude_latitude"]
contributing_score = (
w *
partial_location_distance(obj1["latitude"], obj1["longitude"], obj2["latitude"], obj2["longitude"], weights["threshold"])
)
sum_weights += w
matching_score += contributing_score
logger.debug("'longitude_latitude' check -- weight: %s, contributing score: %s", w, contributing_score)
if check_property_present("region", obj1, obj2):
w = weights["region"]
contributing_score = w * exact_match(obj1["region"], obj2["region"])
sum_weights += w
matching_score += contributing_score
logger.debug("'region' check -- weight: %s, contributing score: %s", w, contributing_score)
if check_property_present("country", obj1, obj2):
w = weights["country"]
contributing_score = w * exact_match(obj1["country"], obj2["country"])
sum_weights += w
matching_score += contributing_score
logger.debug("'country' check -- weight: %s, contributing score: %s", w, contributing_score)
logger.debug("Matching Score: %s, Sum of Weights: %s", matching_score, sum_weights)
return matching_score, sum_weights
def _malware_checks(obj1, obj2, **weights):
matching_score = 0.0
sum_weights = 0.0
if check_property_present("malware_types", obj1, obj2):
w = weights["malware_types"]
contributing_score = w * partial_list_based(obj1["malware_types"], obj2["malware_types"])
sum_weights += w
matching_score += contributing_score
logger.debug("'malware_types' check -- weight: %s, contributing score: %s", w, contributing_score)
if check_property_present("name", obj1, obj2):
w = weights["name"]
contributing_score = w * partial_string_based(obj1["name"], obj2["name"])
sum_weights += w
matching_score += contributing_score
logger.debug("'name' check -- weight: %s, contributing score: %s", w, contributing_score)
logger.debug("Matching Score: %s, Sum of Weights: %s", matching_score, sum_weights)
return matching_score, sum_weights
def _threat_actor_checks(obj1, obj2, **weights):
matching_score = 0.0
sum_weights = 0.0
if check_property_present("name", obj1, obj2):
w = weights["name"]
contributing_score = w * partial_string_based(obj1["name"], obj2["name"])
sum_weights += w
matching_score += contributing_score
logger.debug("'name' check -- weight: %s, contributing score: %s", w, contributing_score)
if check_property_present("threat_actor_types", obj1, obj2):
w = weights["threat_actor_types"]
contributing_score = w * partial_list_based(obj1["threat_actor_types"], obj2["threat_actor_types"])
sum_weights += w
matching_score += contributing_score
logger.debug("'threat_actor_types' check -- weight: %s, contributing score: %s", w, contributing_score)
if check_property_present("aliases", obj1, obj2):
w = weights["aliases"]
contributing_score = w * partial_list_based(obj1["aliases"], obj2["aliases"])
sum_weights += w
matching_score += contributing_score
logger.debug("'aliases' check -- weight: %s, contributing score: %s", w, contributing_score)
logger.debug("Matching Score: %s, Sum of Weights: %s", matching_score, sum_weights)
return matching_score, sum_weights
def _tool_checks(obj1, obj2, **weights):
matching_score = 0.0
sum_weights = 0.0
if check_property_present("tool_types", obj1, obj2):
w = weights["tool_types"]
contributing_score = w * partial_list_based(obj1["tool_types"], obj2["tool_types"])
sum_weights += w
matching_score += contributing_score
logger.debug("'tool_types' check -- weight: %s, contributing score: %s", w, contributing_score)
if check_property_present("name", obj1, obj2):
w = weights["name"]
contributing_score = w * partial_string_based(obj1["name"], obj2["name"])
sum_weights += w
matching_score += contributing_score
logger.debug("'name' check -- weight: %s, contributing score: %s", w, contributing_score)
logger.debug("Matching Score: %s, Sum of Weights: %s", matching_score, sum_weights)
return matching_score, sum_weights
def _vulnerability_checks(obj1, obj2, **weights):
matching_score = 0.0
sum_weights = 0.0
if check_property_present("name", obj1, obj2):
w = weights["name"]
contributing_score = w * partial_string_based(obj1["name"], obj2["name"])
sum_weights += w
matching_score += contributing_score
logger.debug("'name' check -- weight: %s, contributing score: %s", w, contributing_score)
if check_property_present("external_references", obj1, obj2):
w = weights["external_references"]
contributing_score = w * partial_external_reference_based(
obj1["external_references"],
obj2["external_references"],
)
sum_weights += w
matching_score += contributing_score
logger.debug("'external_references' check -- weight: %s, contributing score: %s", w, contributing_score)
logger.debug("Matching Score: %s, Sum of Weights: %s", matching_score, sum_weights)
return matching_score, sum_weights
# default weights used for the semantic equivalence process
WEIGHTS = {
"attack-pattern": {
"name": (30, partial_string_based),
"external_references": (70, partial_external_reference_based),
},
"campaign": {
"name": (60, partial_string_based),
"aliases": (40, partial_list_based),
},
"identity": {
"name": (60, partial_string_based),
"identity_class": (20, exact_match),
"sectors": (20, partial_list_based),
},
"indicator": {
"indicator_types": (15, partial_list_based),
"pattern": (80, custom_pattern_based),
"valid_from": (5, partial_timestamp_based),
"tdelta": 1, # One day interval
},
"location": {
"longitude_latitude": (34, partial_location_distance),
"region": (33, exact_match),
"country": (33, exact_match),
"threshold": 1000.0,
},
"malware": {
"malware_types": (20, partial_list_based),
"name": (80, partial_string_based),
},
"threat-actor": {
"name": (60, partial_string_based),
"threat_actor_types": (20, partial_list_based),
"aliases": (20, partial_list_based),
},
"tool": {
"tool_types": (20, partial_list_based),
"name": (80, partial_string_based),
},
"vulnerability": {
"name": (30, partial_string_based),
"external_references": (70, partial_external_reference_based),
},
"_internal": {
"ignore_spec_version": False,
},
} #: :autodoc-skip:

View File

@ -521,7 +521,7 @@ def test_semantic_equivalence_on_same_vulnerability2():
],
)
VULN_KWARGS2 = dict(
name="Zot",
name="Foo",
external_references=[
{
"url": "https://example2",
@ -550,7 +550,7 @@ def test_semantic_equivalence_on_unknown_object():
CUSTOM_KWARGS2 = dict(
type="x-foobar",
id="x-foobar--0c7b5b88-8ff7-4a4d-aa9d-feb398cd0061",
name="Zot",
name="Foo",
external_references=[
{
"url": "https://example2",
@ -622,11 +622,10 @@ def test_semantic_equivalence_zero_match():
)
weights = {
"indicator": {
"indicator_types": 15,
"pattern": 80,
"valid_from": 0,
"indicator_types": (15, stix2.environment.partial_list_based),
"pattern": (80, stix2.environment.custom_pattern_based),
"valid_from": (5, stix2.environment.partial_timestamp_based),
"tdelta": 1, # One day interval
"method": stix2.environment._indicator_checks,
},
"_internal": {
"ignore_spec_version": False,
@ -645,11 +644,10 @@ def test_semantic_equivalence_different_spec_version():
)
weights = {
"indicator": {
"indicator_types": 15,
"pattern": 80,
"valid_from": 0,
"indicator_types": (15, stix2.environment.partial_list_based),
"pattern": (80, stix2.environment.custom_pattern_based),
"valid_from": (5, stix2.environment.partial_timestamp_based),
"tdelta": 1, # One day interval
"method": stix2.environment._indicator_checks,
},
"_internal": {
"ignore_spec_version": True, # Disables spec_version check.
@ -750,3 +748,75 @@ def test_non_existent_config_for_object():
r1 = stix2.v21.Report(id=REPORT_ID, **REPORT_KWARGS)
r2 = stix2.v21.Report(id=REPORT_ID, **REPORT_KWARGS)
assert stix2.Environment().semantically_equivalent(r1, r2) == 0.0
def custom_semantic_equivalence_method(obj1, obj2, **weights):
return 96.0, 100.0
def test_semantic_equivalence_method_provided():
# Because `method` is provided, `partial_list_based` will be ignored
TOOL2_KWARGS = dict(
name="Random Software",
tool_types=["information-gathering"],
)
weights = {
"tool": {
"tool_types": (20, stix2.environment.partial_list_based),
"name": (80, stix2.environment.partial_string_based),
"method": custom_semantic_equivalence_method,
},
}
tool1 = stix2.v21.Tool(id=TOOL_ID, **TOOL_KWARGS)
tool2 = stix2.v21.Tool(id=TOOL_ID, **TOOL2_KWARGS)
env = stix2.Environment().semantically_equivalent(tool1, tool2, **weights)
assert round(env) == 96
def test_semantic_equivalence_prop_scores():
TOOL2_KWARGS = dict(
name="Random Software",
tool_types=["information-gathering"],
)
prop_scores = {}
tool1 = stix2.v21.Tool(id=TOOL_ID, **TOOL_KWARGS)
tool2 = stix2.v21.Tool(id=TOOL_ID, **TOOL2_KWARGS)
stix2.Environment().semantically_equivalent(tool1, tool2, prop_scores)
assert len(prop_scores) == 4
assert round(prop_scores["matching_score"], 1) == 8.8
assert round(prop_scores["sum_weights"], 1) == 100.0
def custom_semantic_equivalence_method_prop_scores(obj1, obj2, prop_scores, **weights):
prop_scores["matching_score"] = 96.0
prop_scores["sum_weights"] = 100.0
return 96.0, 100.0
def test_semantic_equivalence_prop_scores_method_provided():
TOOL2_KWARGS = dict(
name="Random Software",
tool_types=["information-gathering"],
)
weights = {
"tool": {
"tool_types": 20,
"name": 80,
"method": custom_semantic_equivalence_method_prop_scores,
},
}
prop_scores = {}
tool1 = stix2.v21.Tool(id=TOOL_ID, **TOOL_KWARGS)
tool2 = stix2.v21.Tool(id=TOOL_ID, **TOOL2_KWARGS)
env = stix2.Environment().semantically_equivalent(tool1, tool2, prop_scores, **weights)
assert round(env) == 96
assert len(prop_scores) == 2
assert prop_scores["matching_score"] == 96.0
assert prop_scores["sum_weights"] == 100.0

View File

@ -9,7 +9,7 @@ deps =
pytest-cov
coverage
taxii2-client
pyjarowinkler
fuzzywuzzy
haversine
medallion
commands =