Merge pull request #289 from emmanvg/semantic-equivalence

Semantic Equivalence
master
Chris Lenk 2019-09-25 15:19:40 -04:00 committed by GitHub
commit a55666f1a5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 870 additions and 8 deletions

View File

@ -4,7 +4,9 @@ not_skip = __init__.py
known_third_party = known_third_party =
antlr4, antlr4,
dateutil, dateutil,
haversine,
medallion, medallion,
pyjarowinkler,
pytest, pytest,
pytz, pytz,
requests, requests,

View File

@ -1,16 +1,13 @@
sudo: false sudo: false
language: python language: python
cache: pip cache: pip
dist: xenial
python: python:
- "2.7" - "2.7"
- "3.4" - "3.4"
- "3.5" - "3.5"
- "3.6" - "3.6"
matrix: - "3.7"
include:
- python: 3.7 # https://github.com/travis-ci/travis-ci/issues/9069#issuecomment-425720905
dist: xenial
sudo: true
install: install:
- pip install -U pip setuptools - pip install -U pip setuptools
- pip install tox-travis pre-commit - pip install tox-travis pre-commit

View File

@ -64,5 +64,6 @@ setup(
}, },
extras_require={ extras_require={
'taxii': ['taxii2-client'], 'taxii': ['taxii2-client'],
'semantic': ['haversine', 'pyjarowinkler'],
}, },
) )

View File

@ -1,9 +1,15 @@
"""Python STIX2 Environment API.""" """Python STIX2 Environment API."""
import copy import copy
import logging
import time
from .core import parse as _parse from .core import parse as _parse
from .datastore import CompositeDataSource, DataStoreMixin from .datastore import CompositeDataSource, DataStoreMixin
from .exceptions import SemanticEquivalenceUnsupportedTypeError
from .utils import STIXdatetime, parse_into_datetime
logger = logging.getLogger(__name__)
class ObjectFactory(object): class ObjectFactory(object):
@ -186,3 +192,448 @@ class Environment(DataStoreMixin):
return self.get(creator_id) return self.get(creator_id)
else: else:
return None return None
@staticmethod
def semantically_equivalent(obj1, obj2, **weight_dict):
"""This method is meant to verify if two objects of the same type are
semantically equivalent.
Args:
obj1: A stix2 object instance
obj2: A stix2 object instance
weight_dict: A dictionary that can be used to override settings
in the semantic equivalence process
Returns:
float: A number between 0.0 and 100.0 as a measurement of equivalence.
Warning:
Course of Action, Intrusion-Set, Observed-Data, Report are not supported
by this implementation. Indicator pattern check is also limited.
Note:
This implementation follows the Committee Note on semantic equivalence.
see `the Committee Note <link here>`__.
"""
# default weights used for the semantic equivalence process
weights = {
"attack-pattern": {
"name": 30,
"external_references": 70,
"method": _attack_pattern_checks,
},
"campaign": {
"name": 60,
"aliases": 40,
"method": _campaign_checks,
},
"course-of-action": {
"method": _course_of_action_checks,
},
"identity": {
"name": 60,
"identity_class": 20,
"sectors": 20,
"method": _identity_checks,
},
"indicator": {
"indicator_types": 15,
"pattern": 80,
"valid_from": 5,
"tdelta": 1, # One day interval
"method": _indicator_checks,
},
"intrusion-set": {
"method": _intrusion_set_checks,
},
"location": {
"longitude_latitude": 34,
"region": 33,
"country": 33,
"threshold": 1000.0,
"method": _location_checks,
},
"malware": {
"malware_types": 20,
"name": 80,
"method": _malware_checks,
},
"observed-data": {
"method": _observed_data_checks,
},
"report": {
"method": _report_checks,
},
"threat-actor": {
"name": 60,
"threat_actor_types": 20,
"aliases": 20,
"method": _threat_actor_checks,
},
"tool": {
"tool_types": 20,
"name": 80,
"method": _tool_checks,
},
"vulnerability": {
"name": 30,
"external_references": 70,
"method": _vulnerability_checks,
},
"_internal": {
"ignore_spec_version": False,
},
}
if weight_dict:
weights.update(weight_dict)
type1, type2 = obj1["type"], obj2["type"]
ignore_spec_version = weights["_internal"]["ignore_spec_version"]
if type1 != type2:
raise ValueError('The objects to compare must be of the same type!')
if ignore_spec_version is False and obj1.get("spec_version", "2.0") != obj2.get("spec_version", "2.0"):
raise ValueError('The objects to compare must be of the same spec version!')
method = weights[type1]["method"]
matching_score, sum_weights = method(obj1, obj2, **weights[type1])
if sum_weights <= 0:
return 0
equivalence_score = (matching_score / sum_weights) * 100.0
return equivalence_score
def check_property_present(prop, obj1, obj2):
"""Helper method checks if a property is present on both objects."""
if prop in obj1 and prop in obj2:
return True
return False
def partial_timestamp_based(t1, t2, tdelta):
"""Performs a timestamp-based matching via checking how close one timestamp is to another.
Args:
t1: A datetime string or STIXdatetime object.
t2: A datetime string or STIXdatetime object.
tdelta (float): A given time delta. This number is multiplied by 86400 (1 day) to
extend or shrink your time change tolerance.
Returns:
float: Number between 0.0 and 1.0 depending on match criteria.
"""
if not isinstance(t1, STIXdatetime):
t1 = parse_into_datetime(t1)
if not isinstance(t2, STIXdatetime):
t2 = parse_into_datetime(t2)
t1, t2 = time.mktime(t1.timetuple()), time.mktime(t2.timetuple())
return 1 - min(abs(t1 - t2) / (86400 * tdelta), 1)
def partial_list_based(l1, l2):
"""Performs a partial list matching via finding the intersection between common values.
Args:
l1: A list of values.
l2: A list of values.
Returns:
float: 1.0 if the value matches exactly, 0.0 otherwise.
"""
l1_set, l2_set = set(l1), set(l2)
return len(l1_set.intersection(l2_set)) / max(len(l1), len(l2))
def exact_match(val1, val2):
"""Performs an exact value match based on two values
Args:
val1: A value suitable for an equality test.
val2: A value suitable for an equality test.
Returns:
float: 1.0 if the value matches exactly, 0.0 otherwise.
"""
if val1 == val2:
return 1.0
return 0.0
def partial_string_based(str1, str2):
"""Performs a partial string match using the Jaro-Winkler distance algorithm.
Args:
str1: A string value to check.
str2: A string value to check.
Returns:
float: Number between 0.0 and 1.0 depending on match criteria.
"""
from pyjarowinkler import distance
return distance.get_jaro_distance(str1, str2)
def custom_pattern_based(pattern1, pattern2):
"""Performs a matching on Indicator Patterns.
Args:
pattern1: An Indicator pattern
pattern2: An Indicator pattern
Returns:
float: Number between 0.0 and 1.0 depending on match criteria.
"""
logger.warning("Indicator pattern equivalence is not fully defined; will default to zero if not completely identical")
return exact_match(pattern1, pattern2) # TODO: Implement pattern based equivalence
def partial_external_reference_based(refs1, refs2):
"""Performs a matching on External References.
Args:
refs1: A list of external references.
refs2: A list of external references.
Returns:
float: Number between 0.0 and 1.0 depending on matches.
"""
allowed = set(("veris", "cve", "capec", "mitre-attack"))
matches = 0
if len(refs1) >= len(refs2):
l1 = refs1
l2 = refs2
else:
l1 = refs2
l2 = refs1
for ext_ref1 in l1:
for ext_ref2 in l2:
sn_match = False
ei_match = False
url_match = False
source_name = None
if check_property_present("source_name", ext_ref1, ext_ref2):
if ext_ref1["source_name"] == ext_ref2["source_name"]:
source_name = ext_ref1["source_name"]
sn_match = True
if check_property_present("external_id", ext_ref1, ext_ref2):
if ext_ref1["external_id"] == ext_ref2["external_id"]:
ei_match = True
if check_property_present("url", ext_ref1, ext_ref2):
if ext_ref1["url"] == ext_ref2["url"]:
url_match = True
# Special case: if source_name is a STIX defined name and either
# external_id or url match then its a perfect match and other entries
# can be ignored.
if sn_match and (ei_match or url_match) and source_name in allowed:
return 1.0
# Regular check. If the source_name (not STIX-defined) or external_id or
# url matches then we consider the entry a match.
if (sn_match or ei_match or url_match) and source_name not in allowed:
matches += 1
return matches / max(len(refs1), len(refs2))
def partial_location_distance(lat1, long1, lat2, long2, threshold):
"""Given two coordinates perform a matching based on its distance using the Haversine Formula.
Args:
lat1: Latitude value for first coordinate point.
lat2: Latitude value for second coordinate point.
long1: Longitude value for first coordinate point.
long2: Longitude value for second coordinate point.
threshold (float): A kilometer measurement for the threshold distance between these two points.
Returns:
float: Number between 0.0 and 1.0 depending on match.
"""
from haversine import haversine, Unit
distance = haversine((lat1, long1), (lat2, long2), unit=Unit.KILOMETERS)
return 1 - (distance / threshold)
def _attack_pattern_checks(obj1, obj2, **weights):
matching_score = 0.0
sum_weights = 0.0
if check_property_present("name", obj1, obj2):
w = weights["name"]
sum_weights += w
matching_score += w * partial_string_based(obj1["name"], obj2["name"])
if check_property_present("external_references", obj1, obj2):
w = weights["external_references"]
sum_weights += w
matching_score += (
w *
partial_external_reference_based(obj1["external_references"], obj2["external_references"])
)
return matching_score, sum_weights
def _campaign_checks(obj1, obj2, **weights):
matching_score = 0.0
sum_weights = 0.0
if check_property_present("name", obj1, obj2):
w = weights["name"]
sum_weights += w
matching_score += w * partial_string_based(obj1["name"], obj2["name"])
if check_property_present("aliases", obj1, obj2):
w = weights["aliases"]
sum_weights += w
matching_score += w * partial_list_based(obj1["aliases"], obj2["aliases"])
return matching_score, sum_weights
def _identity_checks(obj1, obj2, **weights):
matching_score = 0.0
sum_weights = 0.0
if check_property_present("name", obj1, obj2):
w = weights["name"]
sum_weights += w
matching_score += w * exact_match(obj1["name"], obj2["name"])
if check_property_present("identity_class", obj1, obj2):
w = weights["identity_class"]
sum_weights += w
matching_score += w * exact_match(obj1["identity_class"], obj2["identity_class"])
if check_property_present("sectors", obj1, obj2):
w = weights["sectors"]
sum_weights += w
matching_score += w * partial_list_based(obj1["sectors"], obj2["sectors"])
return matching_score, sum_weights
def _indicator_checks(obj1, obj2, **weights):
matching_score = 0.0
sum_weights = 0.0
if check_property_present("indicator_types", obj1, obj2):
w = weights["indicator_types"]
sum_weights += w
matching_score += w * partial_list_based(obj1["indicator_types"], obj2["indicator_types"])
if check_property_present("pattern", obj1, obj2):
w = weights["pattern"]
sum_weights += w
matching_score += w * custom_pattern_based(obj1["pattern"], obj2["pattern"])
if check_property_present("valid_from", obj1, obj2):
w = weights["valid_from"]
sum_weights += w
matching_score += (
w *
partial_timestamp_based(obj1["valid_from"], obj2["valid_from"], weights["tdelta"])
)
return matching_score, sum_weights
def _location_checks(obj1, obj2, **weights):
matching_score = 0.0
sum_weights = 0.0
if check_property_present("latitude", obj1, obj2) and check_property_present("longitude", obj1, obj2):
w = weights["longitude_latitude"]
sum_weights += w
matching_score += (
w *
partial_location_distance(obj1["latitude"], obj1["longitude"], obj2["latitude"], obj2["longitude"], weights["threshold"])
)
if check_property_present("region", obj1, obj2):
w = weights["region"]
sum_weights += w
matching_score += w * exact_match(obj1["region"], obj2["region"])
if check_property_present("country", obj1, obj2):
w = weights["country"]
sum_weights += w
matching_score += w * exact_match(obj1["country"], obj2["country"])
return matching_score, sum_weights
def _malware_checks(obj1, obj2, **weights):
matching_score = 0.0
sum_weights = 0.0
if check_property_present("malware_types", obj1, obj2):
w = weights["malware_types"]
sum_weights += w
matching_score += w * partial_list_based(obj1["malware_types"], obj2["malware_types"])
if check_property_present("name", obj1, obj2):
w = weights["name"]
sum_weights += w
matching_score += w * partial_string_based(obj1["name"], obj2["name"])
return matching_score, sum_weights
def _threat_actor_checks(obj1, obj2, **weights):
matching_score = 0.0
sum_weights = 0.0
if check_property_present("name", obj1, obj2):
w = weights["name"]
sum_weights += w
matching_score += w * partial_string_based(obj1["name"], obj2["name"])
if check_property_present("threat_actor_types", obj1, obj2):
w = weights["threat_actor_types"]
sum_weights += w
matching_score += w * partial_list_based(obj1["threat_actor_types"], obj2["threat_actor_types"])
if check_property_present("aliases", obj1, obj2):
w = weights["aliases"]
sum_weights += w
matching_score += w * partial_list_based(obj1["aliases"], obj2["aliases"])
return matching_score, sum_weights
def _tool_checks(obj1, obj2, **weights):
matching_score = 0.0
sum_weights = 0.0
if check_property_present("tool_types", obj1, obj2):
w = weights["tool_types"]
sum_weights += w
matching_score += w * partial_list_based(obj1["tool_types"], obj2["tool_types"])
if check_property_present("name", obj1, obj2):
w = weights["name"]
sum_weights += w
matching_score += w * partial_string_based(obj1["name"], obj2["name"])
return matching_score, sum_weights
def _vulnerability_checks(obj1, obj2, **weights):
matching_score = 0.0
sum_weights = 0.0
if check_property_present("name", obj1, obj2):
w = weights["name"]
sum_weights += w
matching_score += w * partial_string_based(obj1["name"], obj2["name"])
if check_property_present("external_references", obj1, obj2):
w = weights["external_references"]
sum_weights += w
matching_score += w * partial_external_reference_based(
obj1["external_references"],
obj2["external_references"],
)
return matching_score, sum_weights
def _course_of_action_checks(obj1, obj2, **weights):
raise SemanticEquivalenceUnsupportedTypeError("course-of-action type has no semantic equivalence implementation!")
def _intrusion_set_checks(obj1, obj2, **weights):
raise SemanticEquivalenceUnsupportedTypeError("intrusion-set type has no semantic equivalence implementation!")
def _observed_data_checks(obj1, obj2, **weights):
raise SemanticEquivalenceUnsupportedTypeError("observed-data type has no semantic equivalence implementation!")
def _report_checks(obj1, obj2, **weights):
raise SemanticEquivalenceUnsupportedTypeError("report type has no semantic equivalence implementation!")

View File

@ -233,3 +233,10 @@ class STIXDeprecationWarning(DeprecationWarning):
Represents usage of a deprecated component of a STIX specification. Represents usage of a deprecated component of a STIX specification.
""" """
pass pass
class SemanticEquivalenceUnsupportedTypeError(STIXError, TypeError):
"""STIX object type not supported by the semantic equivalence approach."""
def __init__(self, msg):
super(SemanticEquivalenceUnsupportedTypeError, self).__init__(msg)

View File

@ -1,11 +1,17 @@
import pytest import pytest
import stix2 import stix2
import stix2.environment
import stix2.exceptions
from .constants import ( from .constants import (
CAMPAIGN_ID, CAMPAIGN_KWARGS, FAKE_TIME, IDENTITY_ID, IDENTITY_KWARGS, ATTACK_PATTERN_ID, ATTACK_PATTERN_KWARGS, CAMPAIGN_ID, CAMPAIGN_KWARGS,
INDICATOR_ID, INDICATOR_KWARGS, MALWARE_ID, MALWARE_KWARGS, COURSE_OF_ACTION_ID, COURSE_OF_ACTION_KWARGS, FAKE_TIME, IDENTITY_ID,
RELATIONSHIP_IDS, IDENTITY_KWARGS, INDICATOR_ID, INDICATOR_KWARGS, INTRUSION_SET_ID,
INTRUSION_SET_KWARGS, LOCATION_ID, MALWARE_ID, MALWARE_KWARGS,
OBSERVED_DATA_ID, OBSERVED_DATA_KWARGS, RELATIONSHIP_IDS, REPORT_ID,
REPORT_KWARGS, THREAT_ACTOR_ID, THREAT_ACTOR_KWARGS, TOOL_ID, TOOL_KWARGS,
VULNERABILITY_ID, VULNERABILITY_KWARGS,
) )
@ -375,3 +381,399 @@ def test_related_to_by_target(ds):
assert len(resp) == 2 assert len(resp) == 2
assert any(x['id'] == CAMPAIGN_ID for x in resp) assert any(x['id'] == CAMPAIGN_ID for x in resp)
assert any(x['id'] == INDICATOR_ID for x in resp) assert any(x['id'] == INDICATOR_ID for x in resp)
def test_semantic_equivalence_on_same_attack_pattern1():
ap1 = stix2.v21.AttackPattern(id=ATTACK_PATTERN_ID, **ATTACK_PATTERN_KWARGS)
ap2 = stix2.v21.AttackPattern(id=ATTACK_PATTERN_ID, **ATTACK_PATTERN_KWARGS)
env = stix2.Environment().semantically_equivalent(ap1, ap2)
assert round(env) == 100
def test_semantic_equivalence_on_same_attack_pattern2():
ATTACK_KWARGS = dict(
name="Phishing",
external_references=[
{
"url": "https://example2",
"source_name": "some-source2",
},
],
)
ap1 = stix2.v21.AttackPattern(id=ATTACK_PATTERN_ID, **ATTACK_KWARGS)
ap2 = stix2.v21.AttackPattern(id=ATTACK_PATTERN_ID, **ATTACK_KWARGS)
env = stix2.Environment().semantically_equivalent(ap1, ap2)
assert round(env) == 100
def test_semantic_equivalence_on_same_campaign1():
camp1 = stix2.v21.Campaign(id=CAMPAIGN_ID, **CAMPAIGN_KWARGS)
camp2 = stix2.v21.Campaign(id=CAMPAIGN_ID, **CAMPAIGN_KWARGS)
env = stix2.Environment().semantically_equivalent(camp1, camp2)
assert round(env) == 100
def test_semantic_equivalence_on_same_campaign2():
CAMP_KWARGS = dict(
name="Green Group Attacks Against Finance",
description="Campaign by Green Group against a series of targets in the financial services sector.",
aliases=["super-green", "some-green"],
)
camp1 = stix2.v21.Campaign(id=CAMPAIGN_ID, **CAMP_KWARGS)
camp2 = stix2.v21.Campaign(id=CAMPAIGN_ID, **CAMP_KWARGS)
env = stix2.Environment().semantically_equivalent(camp1, camp2)
assert round(env) == 100
def test_semantic_equivalence_on_same_identity1():
iden1 = stix2.v21.Identity(id=IDENTITY_ID, **IDENTITY_KWARGS)
iden2 = stix2.v21.Identity(id=IDENTITY_ID, **IDENTITY_KWARGS)
env = stix2.Environment().semantically_equivalent(iden1, iden2)
assert round(env) == 100
def test_semantic_equivalence_on_same_identity2():
IDEN_KWARGS = dict(
name="John Smith",
identity_class="individual",
sectors=["government", "critical-infrastructure"],
)
iden1 = stix2.v21.Identity(id=IDENTITY_ID, **IDEN_KWARGS)
iden2 = stix2.v21.Identity(id=IDENTITY_ID, **IDEN_KWARGS)
env = stix2.Environment().semantically_equivalent(iden1, iden2)
assert round(env) == 100
def test_semantic_equivalence_on_same_indicator():
ind1 = stix2.v21.Indicator(id=INDICATOR_ID, **INDICATOR_KWARGS)
ind2 = stix2.v21.Indicator(id=INDICATOR_ID, **INDICATOR_KWARGS)
env = stix2.Environment().semantically_equivalent(ind1, ind2)
assert round(env) == 100
def test_semantic_equivalence_on_same_location1():
LOCATION_KWARGS = dict(latitude=45, longitude=179)
loc1 = stix2.v21.Location(id=LOCATION_ID, **LOCATION_KWARGS)
loc2 = stix2.v21.Location(id=LOCATION_ID, **LOCATION_KWARGS)
env = stix2.Environment().semantically_equivalent(loc1, loc2)
assert round(env) == 100
def test_semantic_equivalence_on_same_location2():
LOCATION_KWARGS = dict(
latitude=38.889,
longitude=-77.023,
region="northern-america",
country="us",
)
loc1 = stix2.v21.Location(id=LOCATION_ID, **LOCATION_KWARGS)
loc2 = stix2.v21.Location(id=LOCATION_ID, **LOCATION_KWARGS)
env = stix2.Environment().semantically_equivalent(loc1, loc2)
assert round(env) == 100
def test_semantic_equivalence_on_same_malware():
malw1 = stix2.v21.Malware(id=MALWARE_ID, **MALWARE_KWARGS)
malw2 = stix2.v21.Malware(id=MALWARE_ID, **MALWARE_KWARGS)
env = stix2.Environment().semantically_equivalent(malw1, malw2)
assert round(env) == 100
def test_semantic_equivalence_on_same_threat_actor1():
ta1 = stix2.v21.ThreatActor(id=THREAT_ACTOR_ID, **THREAT_ACTOR_KWARGS)
ta2 = stix2.v21.ThreatActor(id=THREAT_ACTOR_ID, **THREAT_ACTOR_KWARGS)
env = stix2.Environment().semantically_equivalent(ta1, ta2)
assert round(env) == 100
def test_semantic_equivalence_on_same_threat_actor2():
THREAT_KWARGS = dict(
threat_actor_types=["crime-syndicate"],
aliases=["super-evil"],
name="Evil Org",
)
ta1 = stix2.v21.ThreatActor(id=THREAT_ACTOR_ID, **THREAT_KWARGS)
ta2 = stix2.v21.ThreatActor(id=THREAT_ACTOR_ID, **THREAT_KWARGS)
env = stix2.Environment().semantically_equivalent(ta1, ta2)
assert round(env) == 100
def test_semantic_equivalence_on_same_tool():
tool1 = stix2.v21.Tool(id=TOOL_ID, **TOOL_KWARGS)
tool2 = stix2.v21.Tool(id=TOOL_ID, **TOOL_KWARGS)
env = stix2.Environment().semantically_equivalent(tool1, tool2)
assert round(env) == 100
def test_semantic_equivalence_on_same_vulnerability1():
vul1 = stix2.v21.Vulnerability(id=VULNERABILITY_ID, **VULNERABILITY_KWARGS)
vul2 = stix2.v21.Vulnerability(id=VULNERABILITY_ID, **VULNERABILITY_KWARGS)
env = stix2.Environment().semantically_equivalent(vul1, vul2)
assert round(env) == 100
def test_semantic_equivalence_on_same_vulnerability2():
VULN_KWARGS1 = dict(
name="Heartbleed",
external_references=[
{
"url": "https://example",
"source_name": "some-source",
},
],
)
VULN_KWARGS2 = dict(
name="Zot",
external_references=[
{
"url": "https://example2",
"source_name": "some-source2",
},
],
)
vul1 = stix2.v21.Vulnerability(id=VULNERABILITY_ID, **VULN_KWARGS1)
vul2 = stix2.v21.Vulnerability(id=VULNERABILITY_ID, **VULN_KWARGS2)
env = stix2.Environment().semantically_equivalent(vul1, vul2)
assert round(env) == 0.0
def test_semantic_equivalence_on_unknown_object():
CUSTOM_KWARGS1 = dict(
type="x-foobar",
id="x-foobar--0c7b5b88-8ff7-4a4d-aa9d-feb398cd0061",
name="Heartbleed",
external_references=[
{
"url": "https://example",
"source_name": "some-source",
},
],
)
CUSTOM_KWARGS2 = dict(
type="x-foobar",
id="x-foobar--0c7b5b88-8ff7-4a4d-aa9d-feb398cd0061",
name="Zot",
external_references=[
{
"url": "https://example2",
"source_name": "some-source2",
},
],
)
def _x_foobar_checks(obj1, obj2, **weights):
matching_score = 0.0
sum_weights = 0.0
if stix2.environment.check_property_present("external_references", obj1, obj2):
w = weights["external_references"]
sum_weights += w
matching_score += w * stix2.environment.partial_external_reference_based(
obj1["external_references"],
obj2["external_references"],
)
if stix2.environment.check_property_present("name", obj1, obj2):
w = weights["name"]
sum_weights += w
matching_score += w * stix2.environment.partial_string_based(obj1["name"], obj2["name"])
return matching_score, sum_weights
weights = {
"x-foobar": {
"external_references": 40,
"name": 60,
"method": _x_foobar_checks,
},
"_internal": {
"ignore_spec_version": False,
},
}
cust1 = stix2.parse(CUSTOM_KWARGS1, allow_custom=True)
cust2 = stix2.parse(CUSTOM_KWARGS2, allow_custom=True)
env = stix2.Environment().semantically_equivalent(cust1, cust2, **weights)
assert round(env) == 0
def test_semantic_equivalence_different_type_raises():
with pytest.raises(ValueError) as excinfo:
vul1 = stix2.v21.Vulnerability(id=VULNERABILITY_ID, **VULNERABILITY_KWARGS)
ind1 = stix2.v21.Indicator(id=INDICATOR_ID, **INDICATOR_KWARGS)
stix2.Environment().semantically_equivalent(vul1, ind1)
assert str(excinfo.value) == "The objects to compare must be of the same type!"
def test_semantic_equivalence_different_spec_version_raises():
with pytest.raises(ValueError) as excinfo:
V20_KWARGS = dict(
labels=['malicious-activity'],
pattern="[file:hashes.MD5 = 'd41d8cd98f00b204e9800998ecf8427e']",
)
ind1 = stix2.v21.Indicator(id=INDICATOR_ID, **INDICATOR_KWARGS)
ind2 = stix2.v20.Indicator(id=INDICATOR_ID, **V20_KWARGS)
stix2.Environment().semantically_equivalent(ind1, ind2)
assert str(excinfo.value) == "The objects to compare must be of the same spec version!"
@pytest.mark.parametrize(
"obj1,obj2,ret_val",
[
(
stix2.v21.CourseOfAction(id=COURSE_OF_ACTION_ID, **COURSE_OF_ACTION_KWARGS),
stix2.v21.CourseOfAction(id=COURSE_OF_ACTION_ID, **COURSE_OF_ACTION_KWARGS),
"course-of-action type has no semantic equivalence implementation!",
),
(
stix2.v21.IntrusionSet(id=INTRUSION_SET_ID, **INTRUSION_SET_KWARGS),
stix2.v21.IntrusionSet(id=INTRUSION_SET_ID, **INTRUSION_SET_KWARGS),
"intrusion-set type has no semantic equivalence implementation!",
),
(
stix2.v21.ObservedData(id=OBSERVED_DATA_ID, **OBSERVED_DATA_KWARGS),
stix2.v21.ObservedData(id=OBSERVED_DATA_ID, **OBSERVED_DATA_KWARGS),
"observed-data type has no semantic equivalence implementation!",
),
(
stix2.v21.Report(id=REPORT_ID, **REPORT_KWARGS),
stix2.v21.Report(id=REPORT_ID, **REPORT_KWARGS),
"report type has no semantic equivalence implementation!",
),
],
)
def test_semantic_equivalence_on_unsupported_types(obj1, obj2, ret_val):
with pytest.raises(stix2.exceptions.SemanticEquivalenceUnsupportedTypeError) as excinfo:
stix2.Environment().semantically_equivalent(obj1, obj2)
assert ret_val == str(excinfo.value)
def test_semantic_equivalence_zero_match():
IND_KWARGS = dict(
indicator_types=["APTX"],
pattern="[ipv4-addr:value = '192.168.1.1']",
pattern_type="stix",
valid_from="2019-01-01T12:34:56Z",
)
weights = {
"indicator": {
"indicator_types": 15,
"pattern": 80,
"valid_from": 0,
"tdelta": 1, # One day interval
"method": stix2.environment._indicator_checks,
},
"_internal": {
"ignore_spec_version": False,
},
}
ind1 = stix2.v21.Indicator(id=INDICATOR_ID, **INDICATOR_KWARGS)
ind2 = stix2.v21.Indicator(id=INDICATOR_ID, **IND_KWARGS)
env = stix2.Environment().semantically_equivalent(ind1, ind2, **weights)
assert round(env) == 0
def test_semantic_equivalence_different_spec_version():
IND_KWARGS = dict(
labels=["APTX"],
pattern="[ipv4-addr:value = '192.168.1.1']",
)
weights = {
"indicator": {
"indicator_types": 15,
"pattern": 80,
"valid_from": 0,
"tdelta": 1, # One day interval
"method": stix2.environment._indicator_checks,
},
"_internal": {
"ignore_spec_version": True, # Disables spec_version check.
},
}
ind1 = stix2.v21.Indicator(id=INDICATOR_ID, **INDICATOR_KWARGS)
ind2 = stix2.v20.Indicator(id=INDICATOR_ID, **IND_KWARGS)
env = stix2.Environment().semantically_equivalent(ind1, ind2, **weights)
assert round(env) == 0
@pytest.mark.parametrize(
"refs1,refs2,ret_val", [
(
[
{
"url": "https://attack.mitre.org/techniques/T1150",
"source_name": "mitre-attack",
"external_id": "T1150",
},
{
"url": "https://researchcenter.paloaltonetworks.com/2016/09/unit42-sofacys-komplex-os-x-trojan/",
"source_name": "Sofacy Komplex Trojan",
"description": "Dani Creus, Tyler Halfpop, Robert Falcone. (2016, September 26). Sofacy's 'Komplex' OS X Trojan. Retrieved July 8, 2017.",
},
],
[
{
"url": "https://attack.mitre.org/techniques/T1129",
"source_name": "mitre-attack",
"external_id": "T1129",
},
{
"url": "https://en.wikipedia.org/wiki/Microsoft_Windows_library_files",
"source_name": "Wikipedia Windows Library Files",
"description": "Wikipedia. (2017, January 31). Microsoft Windows library files. Retrieved February 13, 2017.",
},
],
0.0,
),
(
[
{
"url": "https://attack.mitre.org/techniques/T1129",
"source_name": "mitre-attack",
"external_id": "T1129",
},
],
[
{
"url": "https://attack.mitre.org/techniques/T1129",
"source_name": "mitre-attack",
"external_id": "T1129",
},
{
"url": "https://en.wikipedia.org/wiki/Microsoft_Windows_library_files",
"source_name": "Wikipedia Windows Library Files",
"description": "Wikipedia. (2017, January 31). Microsoft Windows library files. Retrieved February 13, 2017.",
},
],
1.0,
),
(
[
{
"url": "https://example",
"source_name": "some-source",
},
],
[
{
"url": "https://example",
"source_name": "some-source",
},
],
1.0,
),
],
)
def test_semantic_equivalence_external_references(refs1, refs2, ret_val):
value = stix2.environment.partial_external_reference_based(refs1, refs2)
assert value == ret_val
def test_semantic_equivalence_timetamp():
t1 = "2018-10-17T00:14:20.652Z"
t2 = "2018-10-17T12:14:20.652Z"
assert stix2.environment.partial_timestamp_based(t1, t2, 1) == 0.5
def test_semantic_equivalence_exact_match():
t1 = "2018-10-17T00:14:20.652Z"
t2 = "2018-10-17T12:14:20.652Z"
assert stix2.environment.exact_match(t1, t2) == 0.0

View File

@ -9,6 +9,8 @@ deps =
pytest-cov pytest-cov
coverage coverage
taxii2-client taxii2-client
pyjarowinkler
haversine
medallion medallion
commands = commands =
python -m pytest --cov=stix2 stix2/test/ --cov-report term-missing -W ignore::stix2.exceptions.STIXDeprecationWarning python -m pytest --cov=stix2 stix2/test/ --cov-report term-missing -W ignore::stix2.exceptions.STIXDeprecationWarning