Merge branch 'master' of github.com:oasis-open/cti-python-stix2 into dev-extensions-proposal
commit
bc053da3c4
|
@ -55,8 +55,7 @@ coverage.xml
|
|||
# Sphinx documentation
|
||||
docs/_build/
|
||||
.ipynb_checkpoints
|
||||
graph_default_sem_eq_weights.rst
|
||||
object_default_sem_eq_weights.rst
|
||||
similarity_weights.rst
|
||||
|
||||
# PyBuilder
|
||||
target/
|
||||
|
|
10
docs/conf.py
10
docs/conf.py
|
@ -7,7 +7,6 @@ import sys
|
|||
from sphinx.ext.autodoc import ClassDocumenter
|
||||
|
||||
from stix2.base import _STIXBase
|
||||
from stix2.equivalence.graph import GRAPH_WEIGHTS
|
||||
from stix2.equivalence.object import WEIGHTS
|
||||
from stix2.version import __version__
|
||||
|
||||
|
@ -66,16 +65,9 @@ object_default_sem_eq_weights = json.dumps(WEIGHTS, indent=4, default=lambda o:
|
|||
object_default_sem_eq_weights = object_default_sem_eq_weights.replace('\n', '\n ')
|
||||
object_default_sem_eq_weights = object_default_sem_eq_weights.replace(' "', ' ')
|
||||
object_default_sem_eq_weights = object_default_sem_eq_weights.replace('"\n', '\n')
|
||||
with open('object_default_sem_eq_weights.rst', 'w') as f:
|
||||
with open('similarity_weights.rst', 'w') as f:
|
||||
f.write(".. code-block:: python\n\n {}\n\n".format(object_default_sem_eq_weights))
|
||||
|
||||
graph_default_sem_eq_weights = json.dumps(GRAPH_WEIGHTS, indent=4, default=lambda o: o.__name__)
|
||||
graph_default_sem_eq_weights = graph_default_sem_eq_weights.replace('\n', '\n ')
|
||||
graph_default_sem_eq_weights = graph_default_sem_eq_weights.replace(' "', ' ')
|
||||
graph_default_sem_eq_weights = graph_default_sem_eq_weights.replace('"\n', '\n')
|
||||
with open('graph_default_sem_eq_weights.rst', 'w') as f:
|
||||
f.write(".. code-block:: python\n\n {}\n\n".format(graph_default_sem_eq_weights))
|
||||
|
||||
|
||||
def get_property_type(prop):
|
||||
"""Convert property classname into pretty string name of property.
|
||||
|
|
|
@ -4607,20 +4607,11 @@
|
|||
" ),\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"weights = {\n",
|
||||
" \"_internal\": {\n",
|
||||
" \"ignore_spec_version\": False,\n",
|
||||
" \"versioning_checks\": False,\n",
|
||||
" \"max_depth\": 1,\n",
|
||||
" },\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"memstore1 = MemoryStore(g1)\n",
|
||||
"memstore2 = MemoryStore(g2)\n",
|
||||
"prop_scores = {}\n",
|
||||
"\n",
|
||||
"similarity_result = env.graph_similarity(memstore1, memstore2, prop_scores, **weights)\n",
|
||||
"similarity_result = env.graph_similarity(memstore1, memstore2, prop_scores)\n",
|
||||
"equivalence_result = env.graph_equivalence(memstore1, memstore2, threshold=60)\n",
|
||||
"\n",
|
||||
"print(similarity_result)\n",
|
||||
|
|
2
setup.py
2
setup.py
|
@ -60,7 +60,7 @@ setup(
|
|||
'Bug Tracker': 'https://github.com/oasis-open/cti-python-stix2/issues/',
|
||||
},
|
||||
extras_require={
|
||||
'taxii': ['taxii2-client>=2.2.1'],
|
||||
'taxii': ['taxii2-client>=2.3.0'],
|
||||
'semantic': ['haversine', 'rapidfuzz'],
|
||||
},
|
||||
)
|
||||
|
|
|
@ -17,7 +17,7 @@ from .exceptions import (
|
|||
)
|
||||
from .markings import _MarkingsMixin
|
||||
from .markings.utils import validate
|
||||
from .serialization import STIXJSONEncoder, serialize
|
||||
from .serialization import STIXJSONEncoder, fp_serialize, serialize
|
||||
from .utils import NOW, PREFIX_21_REGEX, get_timestamp
|
||||
from .versioning import new_version as _new_version
|
||||
from .versioning import revoke as _revoke
|
||||
|
@ -262,6 +262,35 @@ class _STIXBase(collections.abc.Mapping):
|
|||
"""
|
||||
return serialize(self, *args, **kwargs)
|
||||
|
||||
def fp_serialize(self, *args, **kwargs):
|
||||
"""
|
||||
Serialize a STIX object to ``fp`` (a text stream file-like supporting object).
|
||||
|
||||
Examples:
|
||||
>>> import stix2
|
||||
>>> identity = stix2.Identity(name='Example Corp.', identity_class='organization')
|
||||
>>> print(identity.serialize(sort_keys=True))
|
||||
{"created": "2018-06-08T19:03:54.066Z", ... "name": "Example Corp.", "type": "identity"}
|
||||
>>> print(identity.serialize(sort_keys=True, indent=4))
|
||||
{
|
||||
"created": "2018-06-08T19:03:54.066Z",
|
||||
"id": "identity--d7f3e25a-ba1c-447a-ab71-6434b092b05e",
|
||||
"identity_class": "organization",
|
||||
"modified": "2018-06-08T19:03:54.066Z",
|
||||
"name": "Example Corp.",
|
||||
"type": "identity"
|
||||
}
|
||||
>>> with open("example.json", mode="w", encoding="utf-8") as f:
|
||||
>>> identity.fp_serialize(f, pretty=True)
|
||||
|
||||
Returns:
|
||||
None
|
||||
|
||||
See Also:
|
||||
``stix2.serialization.fp_serialize`` for options.
|
||||
"""
|
||||
fp_serialize(self, *args, **kwargs)
|
||||
|
||||
|
||||
class _DomainObject(_STIXBase, _MarkingsMixin):
|
||||
pass
|
||||
|
|
|
@ -13,7 +13,7 @@ from stix2.datastore import (
|
|||
)
|
||||
from stix2.datastore.filters import Filter, FilterSet, apply_common_filters
|
||||
from stix2.parsing import parse
|
||||
from stix2.serialization import serialize
|
||||
from stix2.serialization import fp_serialize
|
||||
from stix2.utils import format_datetime, get_type_from_id, parse_into_datetime
|
||||
|
||||
|
||||
|
@ -584,9 +584,8 @@ class FileSystemSink(DataSink):
|
|||
if os.path.isfile(file_path):
|
||||
raise DataSourceError("Attempted to overwrite file (!) at: {}".format(file_path))
|
||||
|
||||
with io.open(file_path, 'w', encoding=encoding) as f:
|
||||
stix_obj = serialize(stix_obj, pretty=True, encoding=encoding, ensure_ascii=False)
|
||||
f.write(stix_obj)
|
||||
with io.open(file_path, mode='w', encoding=encoding) as f:
|
||||
fp_serialize(stix_obj, f, pretty=True, encoding=encoding, ensure_ascii=False)
|
||||
|
||||
def add(self, stix_data=None, version=None):
|
||||
"""Add STIX objects to file directory.
|
||||
|
|
|
@ -12,6 +12,8 @@ from stix2.parsing import parse
|
|||
from stix2.utils import deduplicate
|
||||
|
||||
try:
|
||||
from taxii2client import v20 as tcv20
|
||||
from taxii2client import v21 as tcv21
|
||||
from taxii2client.exceptions import ValidationError
|
||||
_taxii2_client = True
|
||||
except ImportError:
|
||||
|
@ -33,9 +35,12 @@ class TAXIICollectionStore(DataStoreMixin):
|
|||
side(retrieving data) and False for TAXIICollectionSink
|
||||
side(pushing data). However, when parameter is supplied, it will
|
||||
be applied to both TAXIICollectionSource/Sink.
|
||||
items_per_page (int): How many STIX objects to request per call
|
||||
to TAXII Server. The value can be tuned, but servers may override
|
||||
if their internal limit is surpassed. Used by TAXIICollectionSource
|
||||
|
||||
"""
|
||||
def __init__(self, collection, allow_custom=None):
|
||||
def __init__(self, collection, allow_custom=None, items_per_page=5000):
|
||||
if allow_custom is None:
|
||||
allow_custom_source = True
|
||||
allow_custom_sink = False
|
||||
|
@ -43,7 +48,7 @@ class TAXIICollectionStore(DataStoreMixin):
|
|||
allow_custom_sink = allow_custom_source = allow_custom
|
||||
|
||||
super(TAXIICollectionStore, self).__init__(
|
||||
source=TAXIICollectionSource(collection, allow_custom=allow_custom_source),
|
||||
source=TAXIICollectionSource(collection, allow_custom=allow_custom_source, items_per_page=items_per_page),
|
||||
sink=TAXIICollectionSink(collection, allow_custom=allow_custom_sink),
|
||||
)
|
||||
|
||||
|
@ -144,9 +149,12 @@ class TAXIICollectionSource(DataSource):
|
|||
collection (taxii2.Collection): TAXII Collection instance
|
||||
allow_custom (bool): Whether to allow custom STIX content to be
|
||||
added to the FileSystemSink. Default: True
|
||||
items_per_page (int): How many STIX objects to request per call
|
||||
to TAXII Server. The value can be tuned, but servers may override
|
||||
if their internal limit is surpassed.
|
||||
|
||||
"""
|
||||
def __init__(self, collection, allow_custom=True):
|
||||
def __init__(self, collection, allow_custom=True, items_per_page=5000):
|
||||
super(TAXIICollectionSource, self).__init__()
|
||||
if not _taxii2_client:
|
||||
raise ImportError("taxii2client library is required for usage of TAXIICollectionSource")
|
||||
|
@ -167,6 +175,7 @@ class TAXIICollectionSource(DataSource):
|
|||
)
|
||||
|
||||
self.allow_custom = allow_custom
|
||||
self.items_per_page = items_per_page
|
||||
|
||||
def get(self, stix_id, version=None, _composite_filters=None):
|
||||
"""Retrieve STIX object from local/remote STIX Collection
|
||||
|
@ -286,8 +295,12 @@ class TAXIICollectionSource(DataSource):
|
|||
taxii_filters_dict = dict((f.property, f.value) for f in taxii_filters)
|
||||
|
||||
# query TAXII collection
|
||||
all_data = []
|
||||
try:
|
||||
all_data = self.collection.get_objects(**taxii_filters_dict).get('objects', [])
|
||||
paged_request = tcv21.as_pages if isinstance(self.collection, tcv21.Collection) else tcv20.as_pages
|
||||
|
||||
for resource in paged_request(self.collection.get_objects, per_request=self.items_per_page, **taxii_filters_dict):
|
||||
all_data.extend(resource.get("objects", []))
|
||||
|
||||
# deduplicate data (before filtering as reduces wasted filtering)
|
||||
all_data = deduplicate(all_data)
|
||||
|
|
|
@ -189,7 +189,11 @@ class Environment(DataStoreMixin):
|
|||
return None
|
||||
|
||||
@staticmethod
|
||||
def object_similarity(obj1, obj2, prop_scores={}, **weight_dict):
|
||||
def object_similarity(
|
||||
obj1, obj2, prop_scores={}, ds1=None, ds2=None,
|
||||
ignore_spec_version=False, versioning_checks=False,
|
||||
max_depth=1, **weight_dict
|
||||
):
|
||||
"""This method returns a measure of how similar the two objects are.
|
||||
|
||||
Args:
|
||||
|
@ -197,8 +201,19 @@ class Environment(DataStoreMixin):
|
|||
obj2: A stix2 object instance
|
||||
prop_scores: A dictionary that can hold individual property scores,
|
||||
weights, contributing score, matching score and sum of weights.
|
||||
weight_dict: A dictionary that can be used to override settings
|
||||
in the similarity process
|
||||
ds1 (optional): A DataStore object instance from which to pull related objects
|
||||
ds2 (optional): A DataStore object instance from which to pull related objects
|
||||
ignore_spec_version: A boolean indicating whether to test object types
|
||||
that belong to different spec versions (STIX 2.0 and STIX 2.1 for example).
|
||||
If set to True this check will be skipped.
|
||||
versioning_checks: A boolean indicating whether to test multiple revisions
|
||||
of the same object (when present) to maximize similarity against a
|
||||
particular version. If set to True the algorithm will perform this step.
|
||||
max_depth: A positive integer indicating the maximum recursion depth the
|
||||
algorithm can reach when de-referencing objects and performing the
|
||||
object_similarity algorithm.
|
||||
weight_dict: A dictionary that can be used to override what checks are done
|
||||
to objects in the similarity process.
|
||||
|
||||
Returns:
|
||||
float: A number between 0.0 and 100.0 as a measurement of similarity.
|
||||
|
@ -213,17 +228,24 @@ class Environment(DataStoreMixin):
|
|||
Note:
|
||||
Default weight_dict:
|
||||
|
||||
.. include:: ../object_default_sem_eq_weights.rst
|
||||
.. include:: ../similarity_weights.rst
|
||||
|
||||
Note:
|
||||
This implementation follows the Semantic Equivalence Committee Note.
|
||||
see `the Committee Note <link here>`__.
|
||||
|
||||
"""
|
||||
return object_similarity(obj1, obj2, prop_scores, **weight_dict)
|
||||
return object_similarity(
|
||||
obj1, obj2, prop_scores, ds1, ds2, ignore_spec_version,
|
||||
versioning_checks, max_depth, **weight_dict
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def object_equivalence(obj1, obj2, prop_scores={}, threshold=70, **weight_dict):
|
||||
def object_equivalence(
|
||||
obj1, obj2, prop_scores={}, threshold=70, ds1=None, ds2=None,
|
||||
ignore_spec_version=False, versioning_checks=False,
|
||||
max_depth=1, **weight_dict
|
||||
):
|
||||
"""This method returns a true/false value if two objects are semantically equivalent.
|
||||
Internally, it calls the object_similarity function and compares it against the given
|
||||
threshold value.
|
||||
|
@ -236,8 +258,19 @@ class Environment(DataStoreMixin):
|
|||
threshold: A numerical value between 0 and 100 to determine the minimum
|
||||
score to result in successfully calling both objects equivalent. This
|
||||
value can be tuned.
|
||||
weight_dict: A dictionary that can be used to override settings
|
||||
in the similarity process
|
||||
ds1 (optional): A DataStore object instance from which to pull related objects
|
||||
ds2 (optional): A DataStore object instance from which to pull related objects
|
||||
ignore_spec_version: A boolean indicating whether to test object types
|
||||
that belong to different spec versions (STIX 2.0 and STIX 2.1 for example).
|
||||
If set to True this check will be skipped.
|
||||
versioning_checks: A boolean indicating whether to test multiple revisions
|
||||
of the same object (when present) to maximize similarity against a
|
||||
particular version. If set to True the algorithm will perform this step.
|
||||
max_depth: A positive integer indicating the maximum recursion depth the
|
||||
algorithm can reach when de-referencing objects and performing the
|
||||
object_similarity algorithm.
|
||||
weight_dict: A dictionary that can be used to override what checks are done
|
||||
to objects in the similarity process.
|
||||
|
||||
Returns:
|
||||
bool: True if the result of the object similarity is greater than or equal to
|
||||
|
@ -253,17 +286,23 @@ class Environment(DataStoreMixin):
|
|||
Note:
|
||||
Default weight_dict:
|
||||
|
||||
.. include:: ../object_default_sem_eq_weights.rst
|
||||
.. include:: ../similarity_weights.rst
|
||||
|
||||
Note:
|
||||
This implementation follows the Semantic Equivalence Committee Note.
|
||||
see `the Committee Note <link here>`__.
|
||||
|
||||
"""
|
||||
return object_equivalence(obj1, obj2, prop_scores, threshold, **weight_dict)
|
||||
return object_equivalence(
|
||||
obj1, obj2, prop_scores, threshold, ds1, ds2,
|
||||
ignore_spec_version, versioning_checks, max_depth, **weight_dict
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def graph_similarity(ds1, ds2, prop_scores={}, **weight_dict):
|
||||
def graph_similarity(
|
||||
ds1, ds2, prop_scores={}, ignore_spec_version=False,
|
||||
versioning_checks=False, max_depth=1, **weight_dict
|
||||
):
|
||||
"""This method returns a similarity score for two given graphs.
|
||||
Each DataStore can contain a connected or disconnected graph and the
|
||||
final result is weighted over the amount of objects we managed to compare.
|
||||
|
@ -275,8 +314,17 @@ class Environment(DataStoreMixin):
|
|||
ds2: A DataStore object instance representing your graph
|
||||
prop_scores: A dictionary that can hold individual property scores,
|
||||
weights, contributing score, matching score and sum of weights.
|
||||
weight_dict: A dictionary that can be used to override settings
|
||||
in the similarity process
|
||||
ignore_spec_version: A boolean indicating whether to test object types
|
||||
that belong to different spec versions (STIX 2.0 and STIX 2.1 for example).
|
||||
If set to True this check will be skipped.
|
||||
versioning_checks: A boolean indicating whether to test multiple revisions
|
||||
of the same object (when present) to maximize similarity against a
|
||||
particular version. If set to True the algorithm will perform this step.
|
||||
max_depth: A positive integer indicating the maximum recursion depth the
|
||||
algorithm can reach when de-referencing objects and performing the
|
||||
object_similarity algorithm.
|
||||
weight_dict: A dictionary that can be used to override what checks are done
|
||||
to objects in the similarity process.
|
||||
|
||||
Returns:
|
||||
float: A number between 0.0 and 100.0 as a measurement of similarity.
|
||||
|
@ -291,17 +339,24 @@ class Environment(DataStoreMixin):
|
|||
Note:
|
||||
Default weight_dict:
|
||||
|
||||
.. include:: ../graph_default_sem_eq_weights.rst
|
||||
.. include:: ../similarity_weights.rst
|
||||
|
||||
Note:
|
||||
This implementation follows the Semantic Equivalence Committee Note.
|
||||
see `the Committee Note <link here>`__.
|
||||
|
||||
"""
|
||||
return graph_similarity(ds1, ds2, prop_scores, **weight_dict)
|
||||
return graph_similarity(
|
||||
ds1, ds2, prop_scores, ignore_spec_version,
|
||||
versioning_checks, max_depth, **weight_dict
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def graph_equivalence(ds1, ds2, prop_scores={}, threshold=70, **weight_dict):
|
||||
def graph_equivalence(
|
||||
ds1, ds2, prop_scores={}, threshold=70,
|
||||
ignore_spec_version=False, versioning_checks=False,
|
||||
max_depth=1, **weight_dict
|
||||
):
|
||||
"""This method returns a true/false value if two graphs are semantically equivalent.
|
||||
Internally, it calls the graph_similarity function and compares it against the given
|
||||
threshold value.
|
||||
|
@ -314,8 +369,17 @@ class Environment(DataStoreMixin):
|
|||
threshold: A numerical value between 0 and 100 to determine the minimum
|
||||
score to result in successfully calling both graphs equivalent. This
|
||||
value can be tuned.
|
||||
weight_dict: A dictionary that can be used to override settings
|
||||
in the similarity process
|
||||
ignore_spec_version: A boolean indicating whether to test object types
|
||||
that belong to different spec versions (STIX 2.0 and STIX 2.1 for example).
|
||||
If set to True this check will be skipped.
|
||||
versioning_checks: A boolean indicating whether to test multiple revisions
|
||||
of the same object (when present) to maximize similarity against a
|
||||
particular version. If set to True the algorithm will perform this step.
|
||||
max_depth: A positive integer indicating the maximum recursion depth the
|
||||
algorithm can reach when de-referencing objects and performing the
|
||||
object_similarity algorithm.
|
||||
weight_dict: A dictionary that can be used to override what checks are done
|
||||
to objects in the similarity process.
|
||||
|
||||
Returns:
|
||||
bool: True if the result of the graph similarity is greater than or equal to
|
||||
|
@ -331,11 +395,14 @@ class Environment(DataStoreMixin):
|
|||
Note:
|
||||
Default weight_dict:
|
||||
|
||||
.. include:: ../graph_default_sem_eq_weights.rst
|
||||
.. include:: ../similarity_weights.rst
|
||||
|
||||
Note:
|
||||
This implementation follows the Semantic Equivalence Committee Note.
|
||||
see `the Committee Note <link here>`__.
|
||||
|
||||
"""
|
||||
return graph_equivalence(ds1, ds2, prop_scores, threshold, **weight_dict)
|
||||
return graph_equivalence(
|
||||
ds1, ds2, prop_scores, threshold, ignore_spec_version,
|
||||
versioning_checks, max_depth, **weight_dict
|
||||
)
|
||||
|
|
|
@ -2,15 +2,17 @@
|
|||
import logging
|
||||
|
||||
from ..object import (
|
||||
WEIGHTS, _bucket_per_type, _object_pairs, exact_match,
|
||||
list_reference_check, object_similarity, partial_string_based,
|
||||
partial_timestamp_based, reference_check,
|
||||
WEIGHTS, _bucket_per_type, _object_pairs, object_similarity,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def graph_equivalence(ds1, ds2, prop_scores={}, threshold=70, **weight_dict):
|
||||
def graph_equivalence(
|
||||
ds1, ds2, prop_scores={}, threshold=70,
|
||||
ignore_spec_version=False, versioning_checks=False,
|
||||
max_depth=1, **weight_dict
|
||||
):
|
||||
"""This method returns a true/false value if two graphs are semantically equivalent.
|
||||
Internally, it calls the graph_similarity function and compares it against the given
|
||||
threshold value.
|
||||
|
@ -23,8 +25,17 @@ def graph_equivalence(ds1, ds2, prop_scores={}, threshold=70, **weight_dict):
|
|||
threshold: A numerical value between 0 and 100 to determine the minimum
|
||||
score to result in successfully calling both graphs equivalent. This
|
||||
value can be tuned.
|
||||
weight_dict: A dictionary that can be used to override settings
|
||||
in the similarity process
|
||||
ignore_spec_version: A boolean indicating whether to test object types
|
||||
that belong to different spec versions (STIX 2.0 and STIX 2.1 for example).
|
||||
If set to True this check will be skipped.
|
||||
versioning_checks: A boolean indicating whether to test multiple revisions
|
||||
of the same object (when present) to maximize similarity against a
|
||||
particular version. If set to True the algorithm will perform this step.
|
||||
max_depth: A positive integer indicating the maximum recursion depth the
|
||||
algorithm can reach when de-referencing objects and performing the
|
||||
object_similarity algorithm.
|
||||
weight_dict: A dictionary that can be used to override what checks are done
|
||||
to objects in the similarity process.
|
||||
|
||||
Returns:
|
||||
bool: True if the result of the graph similarity is greater than or equal to
|
||||
|
@ -40,20 +51,26 @@ def graph_equivalence(ds1, ds2, prop_scores={}, threshold=70, **weight_dict):
|
|||
Note:
|
||||
Default weight_dict:
|
||||
|
||||
.. include:: ../../graph_default_sem_eq_weights.rst
|
||||
.. include:: ../../similarity_weights.rst
|
||||
|
||||
Note:
|
||||
This implementation follows the Semantic Equivalence Committee Note.
|
||||
see `the Committee Note <link here>`__.
|
||||
|
||||
"""
|
||||
similarity_result = graph_similarity(ds1, ds2, prop_scores, **weight_dict)
|
||||
similarity_result = graph_similarity(
|
||||
ds1, ds2, prop_scores, ignore_spec_version,
|
||||
versioning_checks, max_depth, **weight_dict
|
||||
)
|
||||
if similarity_result >= threshold:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def graph_similarity(ds1, ds2, prop_scores={}, **weight_dict):
|
||||
def graph_similarity(
|
||||
ds1, ds2, prop_scores={}, ignore_spec_version=False,
|
||||
versioning_checks=False, max_depth=1, **weight_dict
|
||||
):
|
||||
"""This method returns a similarity score for two given graphs.
|
||||
Each DataStore can contain a connected or disconnected graph and the
|
||||
final result is weighted over the amount of objects we managed to compare.
|
||||
|
@ -65,8 +82,17 @@ def graph_similarity(ds1, ds2, prop_scores={}, **weight_dict):
|
|||
ds2: A DataStore object instance representing your graph
|
||||
prop_scores: A dictionary that can hold individual property scores,
|
||||
weights, contributing score, matching score and sum of weights.
|
||||
weight_dict: A dictionary that can be used to override settings
|
||||
in the similarity process
|
||||
ignore_spec_version: A boolean indicating whether to test object types
|
||||
that belong to different spec versions (STIX 2.0 and STIX 2.1 for example).
|
||||
If set to True this check will be skipped.
|
||||
versioning_checks: A boolean indicating whether to test multiple revisions
|
||||
of the same object (when present) to maximize similarity against a
|
||||
particular version. If set to True the algorithm will perform this step.
|
||||
max_depth: A positive integer indicating the maximum recursion depth the
|
||||
algorithm can reach when de-referencing objects and performing the
|
||||
object_similarity algorithm.
|
||||
weight_dict: A dictionary that can be used to override what checks are done
|
||||
to objects in the similarity process.
|
||||
|
||||
Returns:
|
||||
float: A number between 0.0 and 100.0 as a measurement of similarity.
|
||||
|
@ -81,7 +107,7 @@ def graph_similarity(ds1, ds2, prop_scores={}, **weight_dict):
|
|||
Note:
|
||||
Default weight_dict:
|
||||
|
||||
.. include:: ../../graph_default_sem_eq_weights.rst
|
||||
.. include:: ../../similarity_weights.rst
|
||||
|
||||
Note:
|
||||
This implementation follows the Semantic Equivalence Committee Note.
|
||||
|
@ -90,13 +116,21 @@ def graph_similarity(ds1, ds2, prop_scores={}, **weight_dict):
|
|||
"""
|
||||
results = {}
|
||||
similarity_score = 0
|
||||
weights = GRAPH_WEIGHTS.copy()
|
||||
weights = WEIGHTS.copy()
|
||||
|
||||
if weight_dict:
|
||||
weights.update(weight_dict)
|
||||
|
||||
if weights["_internal"]["max_depth"] <= 0:
|
||||
raise ValueError("weight_dict['_internal']['max_depth'] must be greater than 0")
|
||||
weights["_internal"] = {
|
||||
"ignore_spec_version": ignore_spec_version,
|
||||
"versioning_checks": versioning_checks,
|
||||
"ds1": ds1,
|
||||
"ds2": ds2,
|
||||
"max_depth": max_depth,
|
||||
}
|
||||
|
||||
if max_depth <= 0:
|
||||
raise ValueError("'max_depth' must be greater than 0")
|
||||
|
||||
pairs = _object_pairs(
|
||||
_bucket_per_type(ds1.query([])),
|
||||
|
@ -104,16 +138,17 @@ def graph_similarity(ds1, ds2, prop_scores={}, **weight_dict):
|
|||
weights,
|
||||
)
|
||||
|
||||
weights["_internal"]["ds1"] = ds1
|
||||
weights["_internal"]["ds2"] = ds2
|
||||
|
||||
logger.debug("Starting graph similarity process between DataStores: '%s' and '%s'", ds1.id, ds2.id)
|
||||
for object1, object2 in pairs:
|
||||
iprop_score = {}
|
||||
object1_id = object1["id"]
|
||||
object2_id = object2["id"]
|
||||
|
||||
result = object_similarity(object1, object2, iprop_score, **weights)
|
||||
result = object_similarity(
|
||||
object1, object2, iprop_score, ds1, ds2,
|
||||
ignore_spec_version, versioning_checks,
|
||||
max_depth, **weights
|
||||
)
|
||||
|
||||
if object1_id not in results:
|
||||
results[object1_id] = {"lhs": object1_id, "rhs": object2_id, "prop_score": iprop_score, "value": result}
|
||||
|
@ -141,40 +176,3 @@ def graph_similarity(ds1, ds2, prop_scores={}, **weight_dict):
|
|||
similarity_score,
|
||||
)
|
||||
return similarity_score
|
||||
|
||||
|
||||
# default weights used for the graph similarity process
|
||||
GRAPH_WEIGHTS = WEIGHTS.copy()
|
||||
GRAPH_WEIGHTS.update({
|
||||
"grouping": {
|
||||
"name": (20, partial_string_based),
|
||||
"context": (20, partial_string_based),
|
||||
"object_refs": (60, list_reference_check),
|
||||
},
|
||||
"relationship": {
|
||||
"relationship_type": (20, exact_match),
|
||||
"source_ref": (40, reference_check),
|
||||
"target_ref": (40, reference_check),
|
||||
},
|
||||
"report": {
|
||||
"name": (30, partial_string_based),
|
||||
"published": (10, partial_timestamp_based),
|
||||
"object_refs": (60, list_reference_check),
|
||||
"tdelta": 1, # One day interval
|
||||
},
|
||||
"sighting": {
|
||||
"first_seen": (5, partial_timestamp_based),
|
||||
"last_seen": (5, partial_timestamp_based),
|
||||
"sighting_of_ref": (40, reference_check),
|
||||
"observed_data_refs": (20, list_reference_check),
|
||||
"where_sighted_refs": (20, list_reference_check),
|
||||
"summary": (10, exact_match),
|
||||
},
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": False,
|
||||
"ds1": None,
|
||||
"ds2": None,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}) # :autodoc-skip:
|
||||
|
|
|
@ -4,14 +4,18 @@ import itertools
|
|||
import logging
|
||||
import time
|
||||
|
||||
from ...datastore import Filter
|
||||
from ...datastore import DataSource, DataStoreMixin, Filter
|
||||
from ...utils import STIXdatetime, parse_into_datetime
|
||||
from ..pattern import equivalent_patterns
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def object_equivalence(obj1, obj2, prop_scores={}, threshold=70, **weight_dict):
|
||||
def object_equivalence(
|
||||
obj1, obj2, prop_scores={}, threshold=70, ds1=None,
|
||||
ds2=None, ignore_spec_version=False,
|
||||
versioning_checks=False, max_depth=1, **weight_dict
|
||||
):
|
||||
"""This method returns a true/false value if two objects are semantically equivalent.
|
||||
Internally, it calls the object_similarity function and compares it against the given
|
||||
threshold value.
|
||||
|
@ -24,8 +28,19 @@ def object_equivalence(obj1, obj2, prop_scores={}, threshold=70, **weight_dict):
|
|||
threshold: A numerical value between 0 and 100 to determine the minimum
|
||||
score to result in successfully calling both objects equivalent. This
|
||||
value can be tuned.
|
||||
weight_dict: A dictionary that can be used to override settings
|
||||
in the similarity process
|
||||
ds1 (optional): A DataStore object instance from which to pull related objects
|
||||
ds2 (optional): A DataStore object instance from which to pull related objects
|
||||
ignore_spec_version: A boolean indicating whether to test object types
|
||||
that belong to different spec versions (STIX 2.0 and STIX 2.1 for example).
|
||||
If set to True this check will be skipped.
|
||||
versioning_checks: A boolean indicating whether to test multiple revisions
|
||||
of the same object (when present) to maximize similarity against a
|
||||
particular version. If set to True the algorithm will perform this step.
|
||||
max_depth: A positive integer indicating the maximum recursion depth the
|
||||
algorithm can reach when de-referencing objects and performing the
|
||||
object_similarity algorithm.
|
||||
weight_dict: A dictionary that can be used to override what checks are done
|
||||
to objects in the similarity process.
|
||||
|
||||
Returns:
|
||||
bool: True if the result of the object similarity is greater than or equal to
|
||||
|
@ -41,20 +56,27 @@ def object_equivalence(obj1, obj2, prop_scores={}, threshold=70, **weight_dict):
|
|||
Note:
|
||||
Default weight_dict:
|
||||
|
||||
.. include:: ../../object_default_sem_eq_weights.rst
|
||||
.. include:: ../../similarity_weights.rst
|
||||
|
||||
Note:
|
||||
This implementation follows the Semantic Equivalence Committee Note.
|
||||
see `the Committee Note <link here>`__.
|
||||
|
||||
"""
|
||||
similarity_result = object_similarity(obj1, obj2, prop_scores, **weight_dict)
|
||||
similarity_result = object_similarity(
|
||||
obj1, obj2, prop_scores, ds1, ds2, ignore_spec_version,
|
||||
versioning_checks, max_depth, **weight_dict
|
||||
)
|
||||
if similarity_result >= threshold:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def object_similarity(obj1, obj2, prop_scores={}, **weight_dict):
|
||||
def object_similarity(
|
||||
obj1, obj2, prop_scores={}, ds1=None, ds2=None,
|
||||
ignore_spec_version=False, versioning_checks=False,
|
||||
max_depth=1, **weight_dict
|
||||
):
|
||||
"""This method returns a measure of similarity depending on how
|
||||
similar the two objects are.
|
||||
|
||||
|
@ -63,8 +85,19 @@ def object_similarity(obj1, obj2, prop_scores={}, **weight_dict):
|
|||
obj2: A stix2 object instance
|
||||
prop_scores: A dictionary that can hold individual property scores,
|
||||
weights, contributing score, matching score and sum of weights.
|
||||
weight_dict: A dictionary that can be used to override settings
|
||||
in the similarity process
|
||||
ds1 (optional): A DataStore object instance from which to pull related objects
|
||||
ds2 (optional): A DataStore object instance from which to pull related objects
|
||||
ignore_spec_version: A boolean indicating whether to test object types
|
||||
that belong to different spec versions (STIX 2.0 and STIX 2.1 for example).
|
||||
If set to True this check will be skipped.
|
||||
versioning_checks: A boolean indicating whether to test multiple revisions
|
||||
of the same object (when present) to maximize similarity against a
|
||||
particular version. If set to True the algorithm will perform this step.
|
||||
max_depth: A positive integer indicating the maximum recursion depth the
|
||||
algorithm can reach when de-referencing objects and performing the
|
||||
object_similarity algorithm.
|
||||
weight_dict: A dictionary that can be used to override what checks are done
|
||||
to objects in the similarity process.
|
||||
|
||||
Returns:
|
||||
float: A number between 0.0 and 100.0 as a measurement of similarity.
|
||||
|
@ -79,7 +112,7 @@ def object_similarity(obj1, obj2, prop_scores={}, **weight_dict):
|
|||
Note:
|
||||
Default weight_dict:
|
||||
|
||||
.. include:: ../../object_default_sem_eq_weights.rst
|
||||
.. include:: ../../similarity_weights.rst
|
||||
|
||||
Note:
|
||||
This implementation follows the Semantic Equivalence Committee Note.
|
||||
|
@ -91,8 +124,15 @@ def object_similarity(obj1, obj2, prop_scores={}, **weight_dict):
|
|||
if weight_dict:
|
||||
weights.update(weight_dict)
|
||||
|
||||
weights["_internal"] = {
|
||||
"ignore_spec_version": ignore_spec_version,
|
||||
"versioning_checks": versioning_checks,
|
||||
"ds1": ds1,
|
||||
"ds2": ds2,
|
||||
"max_depth": max_depth,
|
||||
}
|
||||
|
||||
type1, type2 = obj1["type"], obj2["type"]
|
||||
ignore_spec_version = weights["_internal"]["ignore_spec_version"]
|
||||
|
||||
if type1 != type2:
|
||||
raise ValueError('The objects to compare must be of the same type!')
|
||||
|
@ -117,6 +157,7 @@ def object_similarity(obj1, obj2, prop_scores={}, **weight_dict):
|
|||
if check_property_present(prop, obj1, obj2):
|
||||
w = weights[type1][prop][0]
|
||||
comp_funct = weights[type1][prop][1]
|
||||
prop_scores[prop] = {}
|
||||
|
||||
if comp_funct == partial_timestamp_based:
|
||||
contributing_score = w * comp_funct(obj1[prop], obj2[prop], weights[type1]["tdelta"])
|
||||
|
@ -124,11 +165,18 @@ def object_similarity(obj1, obj2, prop_scores={}, **weight_dict):
|
|||
threshold = weights[type1]["threshold"]
|
||||
contributing_score = w * comp_funct(obj1["latitude"], obj1["longitude"], obj2["latitude"], obj2["longitude"], threshold)
|
||||
elif comp_funct == reference_check or comp_funct == list_reference_check:
|
||||
max_depth = weights["_internal"]["max_depth"]
|
||||
if max_depth > 0:
|
||||
weights["_internal"]["max_depth"] = max_depth - 1
|
||||
ds1, ds2 = weights["_internal"]["ds1"], weights["_internal"]["ds2"]
|
||||
contributing_score = w * comp_funct(obj1[prop], obj2[prop], ds1, ds2, **weights)
|
||||
if _datastore_check(ds1, ds2):
|
||||
contributing_score = w * comp_funct(obj1[prop], obj2[prop], ds1, ds2, **weights)
|
||||
elif comp_funct == reference_check:
|
||||
comp_funct = exact_match
|
||||
contributing_score = w * comp_funct(obj1[prop], obj2[prop])
|
||||
elif comp_funct == list_reference_check:
|
||||
comp_funct = partial_list_based
|
||||
contributing_score = w * comp_funct(obj1[prop], obj2[prop])
|
||||
prop_scores[prop]["check_type"] = comp_funct.__name__
|
||||
else:
|
||||
continue # prevent excessive recursion
|
||||
weights["_internal"]["max_depth"] = max_depth
|
||||
|
@ -138,10 +186,8 @@ def object_similarity(obj1, obj2, prop_scores={}, **weight_dict):
|
|||
sum_weights += w
|
||||
matching_score += contributing_score
|
||||
|
||||
prop_scores[prop] = {
|
||||
"weight": w,
|
||||
"contributing_score": contributing_score,
|
||||
}
|
||||
prop_scores[prop]["weight"] = w
|
||||
prop_scores[prop]["contributing_score"] = contributing_score
|
||||
logger.debug("'%s' check -- weight: %s, contributing score: %s", prop, w, contributing_score)
|
||||
|
||||
prop_scores["matching_score"] = matching_score
|
||||
|
@ -165,7 +211,7 @@ def object_similarity(obj1, obj2, prop_scores={}, **weight_dict):
|
|||
def check_property_present(prop, obj1, obj2):
|
||||
"""Helper method checks if a property is present on both objects."""
|
||||
if prop == "longitude_latitude":
|
||||
if all(x in obj1 and x in obj2 for x in ['latitude', 'longitude']):
|
||||
if all(x in obj1 and x in obj2 for x in ('latitude', 'longitude')):
|
||||
return True
|
||||
elif prop in obj1 and prop in obj2:
|
||||
return True
|
||||
|
@ -196,7 +242,9 @@ def partial_timestamp_based(t1, t2, tdelta):
|
|||
|
||||
|
||||
def partial_list_based(l1, l2):
|
||||
"""Performs a partial list matching via finding the intersection between common values.
|
||||
"""Performs a partial list matching via finding the intersection between
|
||||
common values. Repeated values are counted only once. This method can be
|
||||
used for *_refs equality checks when de-reference is not possible.
|
||||
|
||||
Args:
|
||||
l1: A list of values.
|
||||
|
@ -213,7 +261,8 @@ def partial_list_based(l1, l2):
|
|||
|
||||
|
||||
def exact_match(val1, val2):
|
||||
"""Performs an exact value match based on two values
|
||||
"""Performs an exact value match based on two values. This method can be
|
||||
used for *_ref equality check when de-reference is not possible.
|
||||
|
||||
Args:
|
||||
val1: A value suitable for an equality test.
|
||||
|
@ -261,12 +310,12 @@ def custom_pattern_based(pattern1, pattern2):
|
|||
return equivalent_patterns(pattern1, pattern2)
|
||||
|
||||
|
||||
def partial_external_reference_based(refs1, refs2):
|
||||
def partial_external_reference_based(ext_refs1, ext_refs2):
|
||||
"""Performs a matching on External References.
|
||||
|
||||
Args:
|
||||
refs1: A list of external references.
|
||||
refs2: A list of external references.
|
||||
ext_refs1: A list of external references.
|
||||
ext_refs2: A list of external references.
|
||||
|
||||
Returns:
|
||||
float: Number between 0.0 and 1.0 depending on matches.
|
||||
|
@ -275,51 +324,47 @@ def partial_external_reference_based(refs1, refs2):
|
|||
allowed = {"veris", "cve", "capec", "mitre-attack"}
|
||||
matches = 0
|
||||
|
||||
if len(refs1) >= len(refs2):
|
||||
l1 = refs1
|
||||
l2 = refs2
|
||||
else:
|
||||
l1 = refs2
|
||||
l2 = refs1
|
||||
ref_pairs = itertools.chain(
|
||||
itertools.product(ext_refs1, ext_refs2),
|
||||
)
|
||||
|
||||
for ext_ref1 in l1:
|
||||
for ext_ref2 in l2:
|
||||
sn_match = False
|
||||
ei_match = False
|
||||
url_match = False
|
||||
source_name = None
|
||||
for ext_ref1, ext_ref2 in ref_pairs:
|
||||
sn_match = False
|
||||
ei_match = False
|
||||
url_match = False
|
||||
source_name = None
|
||||
|
||||
if check_property_present("source_name", ext_ref1, ext_ref2):
|
||||
if ext_ref1["source_name"] == ext_ref2["source_name"]:
|
||||
source_name = ext_ref1["source_name"]
|
||||
sn_match = True
|
||||
if check_property_present("external_id", ext_ref1, ext_ref2):
|
||||
if ext_ref1["external_id"] == ext_ref2["external_id"]:
|
||||
ei_match = True
|
||||
if check_property_present("url", ext_ref1, ext_ref2):
|
||||
if ext_ref1["url"] == ext_ref2["url"]:
|
||||
url_match = True
|
||||
if check_property_present("source_name", ext_ref1, ext_ref2):
|
||||
if ext_ref1["source_name"] == ext_ref2["source_name"]:
|
||||
source_name = ext_ref1["source_name"]
|
||||
sn_match = True
|
||||
if check_property_present("external_id", ext_ref1, ext_ref2):
|
||||
if ext_ref1["external_id"] == ext_ref2["external_id"]:
|
||||
ei_match = True
|
||||
if check_property_present("url", ext_ref1, ext_ref2):
|
||||
if ext_ref1["url"] == ext_ref2["url"]:
|
||||
url_match = True
|
||||
|
||||
# Special case: if source_name is a STIX defined name and either
|
||||
# external_id or url match then its a perfect match and other entries
|
||||
# can be ignored.
|
||||
if sn_match and (ei_match or url_match) and source_name in allowed:
|
||||
result = 1.0
|
||||
logger.debug(
|
||||
"--\t\tpartial_external_reference_based '%s' '%s'\tresult: '%s'",
|
||||
refs1, refs2, result,
|
||||
)
|
||||
return result
|
||||
# Special case: if source_name is a STIX defined name and either
|
||||
# external_id or url match then its a perfect match and other entries
|
||||
# can be ignored.
|
||||
if sn_match and (ei_match or url_match) and source_name in allowed:
|
||||
result = 1.0
|
||||
logger.debug(
|
||||
"--\t\tpartial_external_reference_based '%s' '%s'\tresult: '%s'",
|
||||
ext_refs1, ext_refs2, result,
|
||||
)
|
||||
return result
|
||||
|
||||
# Regular check. If the source_name (not STIX-defined) or external_id or
|
||||
# url matches then we consider the entry a match.
|
||||
if (sn_match or ei_match or url_match) and source_name not in allowed:
|
||||
matches += 1
|
||||
# Regular check. If the source_name (not STIX-defined) or external_id or
|
||||
# url matches then we consider the entry a match.
|
||||
if (sn_match or ei_match or url_match) and source_name not in allowed:
|
||||
matches += 1
|
||||
|
||||
result = matches / max(len(refs1), len(refs2))
|
||||
result = matches / max(len(ext_refs1), len(ext_refs2))
|
||||
logger.debug(
|
||||
"--\t\tpartial_external_reference_based '%s' '%s'\tresult: '%s'",
|
||||
refs1, refs2, result,
|
||||
ext_refs1, ext_refs2, result,
|
||||
)
|
||||
return result
|
||||
|
||||
|
@ -352,17 +397,23 @@ def _versioned_checks(ref1, ref2, ds1, ds2, **weights):
|
|||
"""Checks multiple object versions if present in graph.
|
||||
Maximizes for the similarity score of a particular version."""
|
||||
results = {}
|
||||
objects1 = ds1.query([Filter("id", "=", ref1)])
|
||||
objects2 = ds2.query([Filter("id", "=", ref2)])
|
||||
|
||||
pairs = _object_pairs(
|
||||
_bucket_per_type(objects1),
|
||||
_bucket_per_type(objects2),
|
||||
_bucket_per_type(ds1.query([Filter("id", "=", ref1)])),
|
||||
_bucket_per_type(ds2.query([Filter("id", "=", ref2)])),
|
||||
weights,
|
||||
)
|
||||
ignore_spec_version = weights["_internal"]["ignore_spec_version"]
|
||||
versioning_checks = weights["_internal"]["versioning_checks"]
|
||||
max_depth = weights["_internal"]["max_depth"]
|
||||
|
||||
for object1, object2 in pairs:
|
||||
result = object_similarity(object1, object2, **weights)
|
||||
result = object_similarity(
|
||||
object1, object2, ds1=ds1, ds2=ds2,
|
||||
ignore_spec_version=ignore_spec_version,
|
||||
versioning_checks=versioning_checks,
|
||||
max_depth=max_depth, **weights,
|
||||
)
|
||||
if ref1 not in results:
|
||||
results[ref1] = {"matched": ref2, "value": result}
|
||||
elif result > results[ref1]["value"]:
|
||||
|
@ -383,12 +434,20 @@ def reference_check(ref1, ref2, ds1, ds2, **weights):
|
|||
result = 0.0
|
||||
|
||||
if type1 == type2 and type1 in weights:
|
||||
if weights["_internal"]["versioning_checks"]:
|
||||
ignore_spec_version = weights["_internal"]["ignore_spec_version"]
|
||||
versioning_checks = weights["_internal"]["versioning_checks"]
|
||||
max_depth = weights["_internal"]["max_depth"]
|
||||
if versioning_checks:
|
||||
result = _versioned_checks(ref1, ref2, ds1, ds2, **weights) / 100.0
|
||||
else:
|
||||
o1, o2 = ds1.get(ref1), ds2.get(ref2)
|
||||
if o1 and o2:
|
||||
result = object_similarity(o1, o2, **weights) / 100.0
|
||||
result = object_similarity(
|
||||
o1, o2, ds1=ds1, ds2=ds2,
|
||||
ignore_spec_version=ignore_spec_version,
|
||||
versioning_checks=versioning_checks,
|
||||
max_depth=max_depth, **weights,
|
||||
) / 100.0
|
||||
|
||||
logger.debug(
|
||||
"--\t\treference_check '%s' '%s'\tresult: '%s'",
|
||||
|
@ -439,6 +498,15 @@ def list_reference_check(refs1, refs2, ds1, ds2, **weights):
|
|||
return result
|
||||
|
||||
|
||||
def _datastore_check(ds1, ds2):
|
||||
if (
|
||||
issubclass(ds1.__class__, (DataStoreMixin, DataSource)) or
|
||||
issubclass(ds2.__class__, (DataStoreMixin, DataSource))
|
||||
):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def _bucket_per_type(graph, mode="type"):
|
||||
"""Given a list of objects or references, bucket them by type.
|
||||
Depending on the list type: extract from 'type' property or using
|
||||
|
@ -480,11 +548,20 @@ WEIGHTS = {
|
|||
"name": (60, partial_string_based),
|
||||
"external_references": (40, partial_external_reference_based),
|
||||
},
|
||||
"grouping": {
|
||||
"name": (20, partial_string_based),
|
||||
"context": (20, partial_string_based),
|
||||
"object_refs": (60, list_reference_check),
|
||||
},
|
||||
"identity": {
|
||||
"name": (60, partial_string_based),
|
||||
"identity_class": (20, exact_match),
|
||||
"sectors": (20, partial_list_based),
|
||||
},
|
||||
"incident": {
|
||||
"name": (30, partial_string_based),
|
||||
"external_references": (70, partial_external_reference_based),
|
||||
},
|
||||
"indicator": {
|
||||
"indicator_types": (15, partial_list_based),
|
||||
"pattern": (80, custom_pattern_based),
|
||||
|
@ -511,6 +588,25 @@ WEIGHTS = {
|
|||
"definition": (60, exact_match),
|
||||
"definition_type": (20, exact_match),
|
||||
},
|
||||
"relationship": {
|
||||
"relationship_type": (20, exact_match),
|
||||
"source_ref": (40, reference_check),
|
||||
"target_ref": (40, reference_check),
|
||||
},
|
||||
"report": {
|
||||
"name": (30, partial_string_based),
|
||||
"published": (10, partial_timestamp_based),
|
||||
"object_refs": (60, list_reference_check),
|
||||
"tdelta": 1, # One day interval
|
||||
},
|
||||
"sighting": {
|
||||
"first_seen": (5, partial_timestamp_based),
|
||||
"last_seen": (5, partial_timestamp_based),
|
||||
"sighting_of_ref": (40, reference_check),
|
||||
"observed_data_refs": (20, list_reference_check),
|
||||
"where_sighted_refs": (20, list_reference_check),
|
||||
"summary": (10, exact_match),
|
||||
},
|
||||
"threat-actor": {
|
||||
"name": (60, partial_string_based),
|
||||
"threat_actor_types": (20, partial_list_based),
|
||||
|
@ -524,7 +620,4 @@ WEIGHTS = {
|
|||
"name": (30, partial_string_based),
|
||||
"external_references": (70, partial_external_reference_based),
|
||||
},
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
},
|
||||
} # :autodoc-skip:
|
||||
|
|
|
@ -2,6 +2,7 @@
|
|||
|
||||
import copy
|
||||
import datetime as dt
|
||||
import io
|
||||
|
||||
import simplejson as json
|
||||
|
||||
|
@ -64,6 +65,37 @@ def serialize(obj, pretty=False, include_optional_defaults=False, **kwargs):
|
|||
Returns:
|
||||
str: The serialized JSON object.
|
||||
|
||||
Note:
|
||||
The argument ``pretty=True`` will output the STIX object following
|
||||
spec order. Using this argument greatly impacts object serialization
|
||||
performance. If your use case is centered across machine-to-machine
|
||||
operation it is recommended to set ``pretty=False``.
|
||||
|
||||
When ``pretty=True`` the following key-value pairs will be added or
|
||||
overridden: indent=4, separators=(",", ": "), item_sort_key=sort_by.
|
||||
"""
|
||||
with io.StringIO() as fp:
|
||||
fp_serialize(obj, fp, pretty, include_optional_defaults, **kwargs)
|
||||
return fp.getvalue()
|
||||
|
||||
|
||||
def fp_serialize(obj, fp, pretty=False, include_optional_defaults=False, **kwargs):
|
||||
"""
|
||||
Serialize a STIX object to ``fp`` (a text stream file-like supporting object).
|
||||
|
||||
Args:
|
||||
obj: The STIX object to be serialized.
|
||||
fp: A text stream file-like object supporting ``.write()``.
|
||||
pretty (bool): If True, output properties following the STIX specs
|
||||
formatting. This includes indentation. Refer to notes for more
|
||||
details. (Default: ``False``)
|
||||
include_optional_defaults (bool): Determines whether to include
|
||||
optional properties set to the default value defined in the spec.
|
||||
**kwargs: The arguments for a json.dumps() call.
|
||||
|
||||
Returns:
|
||||
None
|
||||
|
||||
Note:
|
||||
The argument ``pretty=True`` will output the STIX object following
|
||||
spec order. Using this argument greatly impacts object serialization
|
||||
|
@ -80,9 +112,9 @@ def serialize(obj, pretty=False, include_optional_defaults=False, **kwargs):
|
|||
kwargs.update({'indent': 4, 'separators': (',', ': '), 'item_sort_key': sort_by})
|
||||
|
||||
if include_optional_defaults:
|
||||
return json.dumps(obj, cls=STIXJSONIncludeOptionalDefaultsEncoder, **kwargs)
|
||||
json.dump(obj, fp, cls=STIXJSONIncludeOptionalDefaultsEncoder, **kwargs)
|
||||
else:
|
||||
return json.dumps(obj, cls=STIXJSONEncoder, **kwargs)
|
||||
json.dump(obj, fp, cls=STIXJSONEncoder, **kwargs)
|
||||
|
||||
|
||||
def _find(seq, val):
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
import io
|
||||
import json
|
||||
|
||||
import pytest
|
||||
|
@ -113,6 +114,27 @@ def test_bundle_id_must_start_with_bundle():
|
|||
assert str(excinfo.value) == "Invalid value for Bundle 'id': must start with 'bundle--'."
|
||||
|
||||
|
||||
def test_create_bundle_fp_serialize_pretty(indicator, malware, relationship):
|
||||
bundle = stix2.v20.Bundle(objects=[indicator, malware, relationship])
|
||||
buffer = io.StringIO()
|
||||
|
||||
bundle.fp_serialize(buffer, pretty=True)
|
||||
|
||||
assert str(bundle) == EXPECTED_BUNDLE
|
||||
assert bundle.serialize(pretty=True) == EXPECTED_BUNDLE
|
||||
assert buffer.getvalue() == EXPECTED_BUNDLE
|
||||
|
||||
|
||||
def test_create_bundle_fp_serialize_nonpretty(indicator, malware, relationship):
|
||||
bundle = stix2.v20.Bundle(objects=[indicator, malware, relationship])
|
||||
buffer = io.StringIO()
|
||||
|
||||
bundle.fp_serialize(buffer, sort_keys=True)
|
||||
|
||||
assert bundle.serialize(sort_keys=True) == json.dumps(json.loads(EXPECTED_BUNDLE), sort_keys=True)
|
||||
assert buffer.getvalue() == json.dumps(json.loads(EXPECTED_BUNDLE), sort_keys=True)
|
||||
|
||||
|
||||
def test_create_bundle1(indicator, malware, relationship):
|
||||
bundle = stix2.v20.Bundle(objects=[indicator, malware, relationship])
|
||||
|
||||
|
|
|
@ -4,7 +4,7 @@ from medallion.filters.basic_filter import BasicFilter
|
|||
import pytest
|
||||
from requests.models import Response
|
||||
from taxii2client.common import _filter_kwargs_to_query_params
|
||||
from taxii2client.v20 import Collection
|
||||
from taxii2client.v20 import MEDIA_TYPE_STIX_V20, Collection
|
||||
|
||||
import stix2
|
||||
from stix2.datastore import DataSourceError
|
||||
|
@ -34,12 +34,12 @@ class MockTAXIICollectionEndpoint(Collection):
|
|||
{
|
||||
"date_added": get_timestamp(),
|
||||
"id": object["id"],
|
||||
"media_type": "application/stix+json;version=2.1",
|
||||
"media_type": "application/stix+json;version=2.0",
|
||||
"version": object.get("modified", object.get("created", get_timestamp())),
|
||||
},
|
||||
)
|
||||
|
||||
def get_objects(self, **filter_kwargs):
|
||||
def get_objects(self, accept=MEDIA_TYPE_STIX_V20, start=0, per_request=0, **filter_kwargs):
|
||||
self._verify_can_read()
|
||||
query_params = _filter_kwargs_to_query_params(filter_kwargs)
|
||||
assert isinstance(query_params, dict)
|
||||
|
@ -51,7 +51,12 @@ class MockTAXIICollectionEndpoint(Collection):
|
|||
100,
|
||||
)[0]
|
||||
if objs:
|
||||
return stix2.v20.Bundle(objects=objs)
|
||||
resp = Response()
|
||||
resp.status_code = 200
|
||||
resp.headers["Content-Range"] = f"items 0-{len(objs)}/{len(objs)}"
|
||||
resp.encoding = "utf-8"
|
||||
resp._content = bytes(stix2.v20.Bundle(objects=objs).serialize(ensure_ascii=False), resp.encoding)
|
||||
return resp
|
||||
else:
|
||||
resp = Response()
|
||||
resp.status_code = 404
|
||||
|
|
|
@ -424,7 +424,7 @@ def test_related_to_by_target(ds):
|
|||
|
||||
|
||||
def test_versioned_checks(ds, ds2):
|
||||
weights = stix2.equivalence.graph.GRAPH_WEIGHTS.copy()
|
||||
weights = stix2.equivalence.graph.WEIGHTS.copy()
|
||||
weights.update({
|
||||
"_internal": {
|
||||
"ignore_spec_version": True,
|
||||
|
@ -437,7 +437,7 @@ def test_versioned_checks(ds, ds2):
|
|||
|
||||
|
||||
def test_semantic_check_with_versioning(ds, ds2):
|
||||
weights = stix2.equivalence.graph.GRAPH_WEIGHTS.copy()
|
||||
weights = stix2.equivalence.graph.WEIGHTS.copy()
|
||||
weights.update({
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
|
@ -467,13 +467,11 @@ def test_semantic_check_with_versioning(ds, ds2):
|
|||
|
||||
|
||||
def test_list_semantic_check(ds, ds2):
|
||||
weights = stix2.equivalence.graph.GRAPH_WEIGHTS.copy()
|
||||
weights = stix2.equivalence.graph.WEIGHTS.copy()
|
||||
weights.update({
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": False,
|
||||
"ds1": ds,
|
||||
"ds2": ds2,
|
||||
"max_depth": 1,
|
||||
},
|
||||
})
|
||||
|
@ -504,39 +502,18 @@ def test_list_semantic_check(ds, ds2):
|
|||
|
||||
|
||||
def test_graph_similarity_raises_value_error(ds):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": False,
|
||||
"max_depth": -1,
|
||||
},
|
||||
}
|
||||
with pytest.raises(ValueError):
|
||||
prop_scores1 = {}
|
||||
stix2.Environment().graph_similarity(ds, ds2, prop_scores1, **weights)
|
||||
stix2.Environment().graph_similarity(ds, ds2, prop_scores1, max_depth=-1)
|
||||
|
||||
|
||||
def test_graph_similarity_with_filesystem_source(ds, fs):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": True,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores1 = {}
|
||||
env1 = stix2.Environment().graph_similarity(fs, ds, prop_scores1, **weights)
|
||||
env1 = stix2.Environment().graph_similarity(fs, ds, prop_scores1, ignore_spec_version=True)
|
||||
|
||||
# Switching parameters
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": True,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores2 = {}
|
||||
env2 = stix2.Environment().graph_similarity(ds, fs, prop_scores2, **weights)
|
||||
env2 = stix2.Environment().graph_similarity(ds, fs, prop_scores2, ignore_spec_version=True)
|
||||
|
||||
assert round(env1) == 25
|
||||
assert round(prop_scores1["matching_score"]) == 451
|
||||
|
@ -552,41 +529,20 @@ def test_graph_similarity_with_filesystem_source(ds, fs):
|
|||
|
||||
|
||||
def test_graph_similarity_with_duplicate_graph(ds):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores = {}
|
||||
env = stix2.Environment().graph_similarity(ds, ds, prop_scores, **weights)
|
||||
env = stix2.Environment().graph_similarity(ds, ds, prop_scores)
|
||||
assert round(env) == 100
|
||||
assert round(prop_scores["matching_score"]) == 800
|
||||
assert round(prop_scores["len_pairs"]) == 8
|
||||
|
||||
|
||||
def test_graph_similarity_with_versioning_check_on(ds2, ds):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": True,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores1 = {}
|
||||
env1 = stix2.Environment().graph_similarity(ds, ds2, prop_scores1, **weights)
|
||||
env1 = stix2.Environment().graph_similarity(ds, ds2, prop_scores1, versioning_checks=True)
|
||||
|
||||
# Switching parameters
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": True,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores2 = {}
|
||||
env2 = stix2.Environment().graph_similarity(ds2, ds, prop_scores2, **weights)
|
||||
env2 = stix2.Environment().graph_similarity(ds2, ds, prop_scores2, versioning_checks=True)
|
||||
|
||||
assert round(env1) == 88
|
||||
assert round(prop_scores1["matching_score"]) == 789
|
||||
|
@ -602,26 +558,12 @@ def test_graph_similarity_with_versioning_check_on(ds2, ds):
|
|||
|
||||
|
||||
def test_graph_similarity_with_versioning_check_off(ds2, ds):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores1 = {}
|
||||
env1 = stix2.Environment().graph_similarity(ds, ds2, prop_scores1, **weights)
|
||||
env1 = stix2.Environment().graph_similarity(ds, ds2, prop_scores1)
|
||||
|
||||
# Switching parameters
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores2 = {}
|
||||
env2 = stix2.Environment().graph_similarity(ds2, ds, prop_scores2, **weights)
|
||||
env2 = stix2.Environment().graph_similarity(ds2, ds, prop_scores2)
|
||||
|
||||
assert round(env1) == 88
|
||||
assert round(prop_scores1["matching_score"]) == 789
|
||||
|
@ -637,26 +579,12 @@ def test_graph_similarity_with_versioning_check_off(ds2, ds):
|
|||
|
||||
|
||||
def test_graph_equivalence_with_filesystem_source(ds, fs):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": True,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores1 = {}
|
||||
env1 = stix2.Environment().graph_equivalence(fs, ds, prop_scores1, **weights)
|
||||
env1 = stix2.Environment().graph_equivalence(fs, ds, prop_scores1, ignore_spec_version=True)
|
||||
|
||||
# Switching parameters
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": True,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores2 = {}
|
||||
env2 = stix2.Environment().graph_equivalence(ds, fs, prop_scores2, **weights)
|
||||
env2 = stix2.Environment().graph_equivalence(ds, fs, prop_scores2, ignore_spec_version=True)
|
||||
|
||||
assert env1 is False
|
||||
assert round(prop_scores1["matching_score"]) == 451
|
||||
|
@ -672,41 +600,20 @@ def test_graph_equivalence_with_filesystem_source(ds, fs):
|
|||
|
||||
|
||||
def test_graph_equivalence_with_duplicate_graph(ds):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores = {}
|
||||
env = stix2.Environment().graph_equivalence(ds, ds, prop_scores, **weights)
|
||||
env = stix2.Environment().graph_equivalence(ds, ds, prop_scores)
|
||||
assert env is True
|
||||
assert round(prop_scores["matching_score"]) == 800
|
||||
assert round(prop_scores["len_pairs"]) == 8
|
||||
|
||||
|
||||
def test_graph_equivalence_with_versioning_check_on(ds2, ds):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": True,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores1 = {}
|
||||
env1 = stix2.Environment().graph_equivalence(ds, ds2, prop_scores1, **weights)
|
||||
env1 = stix2.Environment().graph_equivalence(ds, ds2, prop_scores1, versioning_checks=True)
|
||||
|
||||
# Switching parameters
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": True,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores2 = {}
|
||||
env2 = stix2.Environment().graph_equivalence(ds2, ds, prop_scores2, **weights)
|
||||
env2 = stix2.Environment().graph_equivalence(ds2, ds, prop_scores2, versioning_checks=True)
|
||||
|
||||
assert env1 is True
|
||||
assert round(prop_scores1["matching_score"]) == 789
|
||||
|
@ -722,26 +629,12 @@ def test_graph_equivalence_with_versioning_check_on(ds2, ds):
|
|||
|
||||
|
||||
def test_graph_equivalence_with_versioning_check_off(ds2, ds):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores1 = {}
|
||||
env1 = stix2.Environment().graph_equivalence(ds, ds2, prop_scores1, **weights)
|
||||
env1 = stix2.Environment().graph_equivalence(ds, ds2, prop_scores1)
|
||||
|
||||
# Switching parameters
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores2 = {}
|
||||
env2 = stix2.Environment().graph_equivalence(ds2, ds, prop_scores2, **weights)
|
||||
env2 = stix2.Environment().graph_equivalence(ds2, ds, prop_scores2)
|
||||
|
||||
assert env1 is True
|
||||
assert round(prop_scores1["matching_score"]) == 789
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
import io
|
||||
import json
|
||||
|
||||
import pytest
|
||||
|
@ -123,6 +124,27 @@ def test_bundle_id_must_start_with_bundle():
|
|||
assert str(excinfo.value) == "Invalid value for Bundle 'id': must start with 'bundle--'."
|
||||
|
||||
|
||||
def test_create_bundle_fp_serialize_pretty(indicator, malware, relationship):
|
||||
bundle = stix2.v21.Bundle(objects=[indicator, malware, relationship])
|
||||
buffer = io.StringIO()
|
||||
|
||||
bundle.fp_serialize(buffer, pretty=True)
|
||||
|
||||
assert str(bundle) == EXPECTED_BUNDLE
|
||||
assert bundle.serialize(pretty=True) == EXPECTED_BUNDLE
|
||||
assert buffer.getvalue() == EXPECTED_BUNDLE
|
||||
|
||||
|
||||
def test_create_bundle_fp_serialize_nonpretty(indicator, malware, relationship):
|
||||
bundle = stix2.v21.Bundle(objects=[indicator, malware, relationship])
|
||||
buffer = io.StringIO()
|
||||
|
||||
bundle.fp_serialize(buffer, sort_keys=True)
|
||||
|
||||
assert bundle.serialize(sort_keys=True) == json.dumps(json.loads(EXPECTED_BUNDLE), sort_keys=True)
|
||||
assert buffer.getvalue() == json.dumps(json.loads(EXPECTED_BUNDLE), sort_keys=True)
|
||||
|
||||
|
||||
def test_create_bundle1(indicator, malware, relationship):
|
||||
bundle = stix2.v21.Bundle(objects=[indicator, malware, relationship])
|
||||
|
||||
|
|
|
@ -28,14 +28,14 @@ class MockTAXIICollectionEndpoint(Collection):
|
|||
self._verify_can_write()
|
||||
if isinstance(bundle, str):
|
||||
bundle = json.loads(bundle)
|
||||
for object in bundle.get("objects", []):
|
||||
self.objects.append(object)
|
||||
for obj in bundle.get("objects", []):
|
||||
self.objects.append(obj)
|
||||
self.manifests.append(
|
||||
{
|
||||
"date_added": get_timestamp(),
|
||||
"id": object["id"],
|
||||
"id": obj["id"],
|
||||
"media_type": "application/stix+json;version=2.1",
|
||||
"version": object.get("modified", object.get("created", get_timestamp())),
|
||||
"version": obj.get("modified", obj.get("created", get_timestamp())),
|
||||
},
|
||||
)
|
||||
|
||||
|
@ -51,7 +51,10 @@ class MockTAXIICollectionEndpoint(Collection):
|
|||
100,
|
||||
)[0]
|
||||
if objs:
|
||||
return stix2.v21.Bundle(objects=objs)
|
||||
return {
|
||||
"objects": objs,
|
||||
"more": False,
|
||||
}
|
||||
else:
|
||||
resp = Response()
|
||||
resp.status_code = 404
|
||||
|
@ -75,7 +78,10 @@ class MockTAXIICollectionEndpoint(Collection):
|
|||
else:
|
||||
filtered_objects = []
|
||||
if filtered_objects:
|
||||
return stix2.v21.Bundle(objects=filtered_objects)
|
||||
return {
|
||||
"objects": filtered_objects,
|
||||
"more": False,
|
||||
}
|
||||
else:
|
||||
resp = Response()
|
||||
resp.status_code = 404
|
||||
|
|
|
@ -760,16 +760,13 @@ def test_object_similarity_different_spec_version():
|
|||
"valid_from": (5, stix2.equivalence.object.partial_timestamp_based),
|
||||
"tdelta": 1, # One day interval
|
||||
},
|
||||
"_internal": {
|
||||
"ignore_spec_version": True, # Disables spec_version check.
|
||||
},
|
||||
}
|
||||
ind1 = stix2.v21.Indicator(id=INDICATOR_ID, **INDICATOR_KWARGS)
|
||||
ind2 = stix2.v20.Indicator(id=INDICATOR_ID, **IND_KWARGS)
|
||||
env = stix2.Environment().object_similarity(ind1, ind2, **weights)
|
||||
env = stix2.Environment().object_similarity(ind1, ind2, ignore_spec_version=True, **weights)
|
||||
assert round(env) == 0
|
||||
|
||||
env = stix2.Environment().object_similarity(ind2, ind1, **weights)
|
||||
env = stix2.Environment().object_similarity(ind2, ind1, ignore_spec_version=True, **weights)
|
||||
assert round(env) == 0
|
||||
|
||||
|
||||
|
@ -858,10 +855,12 @@ def test_object_similarity_exact_match():
|
|||
assert stix2.equivalence.object.exact_match(t1, t2) == 0.0
|
||||
|
||||
|
||||
def test_non_existent_config_for_object():
|
||||
def test_no_datastore_fallsback_list_based_check_for_refs_check():
|
||||
r1 = stix2.v21.Report(id=REPORT_ID, **REPORT_KWARGS)
|
||||
r2 = stix2.v21.Report(id=REPORT_ID, **REPORT_KWARGS)
|
||||
assert stix2.Environment().object_similarity(r1, r2) == 0.0
|
||||
prop_scores = {}
|
||||
assert stix2.Environment().object_similarity(r1, r2, prop_scores) == 100.0
|
||||
assert prop_scores["object_refs"]["check_type"] == "partial_list_based"
|
||||
|
||||
|
||||
def custom_semantic_equivalence_method(obj1, obj2, **weights):
|
||||
|
@ -937,7 +936,8 @@ def test_object_similarity_prop_scores_method_provided():
|
|||
|
||||
|
||||
def test_versioned_checks(ds, ds2):
|
||||
weights = stix2.equivalence.graph.GRAPH_WEIGHTS.copy()
|
||||
# Testing internal method
|
||||
weights = stix2.equivalence.graph.WEIGHTS.copy()
|
||||
weights.update({
|
||||
"_internal": {
|
||||
"ignore_spec_version": True,
|
||||
|
@ -950,7 +950,7 @@ def test_versioned_checks(ds, ds2):
|
|||
|
||||
|
||||
def test_semantic_check_with_versioning(ds, ds2):
|
||||
weights = stix2.equivalence.graph.GRAPH_WEIGHTS.copy()
|
||||
weights = stix2.equivalence.graph.WEIGHTS.copy()
|
||||
weights.update({
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
|
@ -981,7 +981,7 @@ def test_semantic_check_with_versioning(ds, ds2):
|
|||
|
||||
|
||||
def test_list_semantic_check(ds, ds2):
|
||||
weights = stix2.equivalence.graph.GRAPH_WEIGHTS.copy()
|
||||
weights = stix2.equivalence.graph.WEIGHTS.copy()
|
||||
weights.update({
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
|
@ -1027,39 +1027,28 @@ def test_list_semantic_check(ds, ds2):
|
|||
|
||||
|
||||
def test_graph_similarity_raises_value_error(ds):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": False,
|
||||
"max_depth": -1,
|
||||
},
|
||||
}
|
||||
with pytest.raises(ValueError):
|
||||
prop_scores1 = {}
|
||||
stix2.Environment().graph_similarity(ds, ds2, prop_scores1, **weights)
|
||||
stix2.Environment().graph_similarity(ds, ds2, prop_scores1, max_depth=-1)
|
||||
|
||||
|
||||
def test_graph_similarity_with_filesystem_source(ds, fs):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": True,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores1 = {}
|
||||
env1 = stix2.Environment().graph_similarity(fs, ds, prop_scores1, **weights)
|
||||
env1 = stix2.Environment().graph_similarity(
|
||||
fs, ds, prop_scores1,
|
||||
ignore_spec_version=True,
|
||||
versioning_checks=False,
|
||||
max_depth=1,
|
||||
)
|
||||
|
||||
# Switching parameters
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": True,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores2 = {}
|
||||
env2 = stix2.Environment().graph_similarity(ds, fs, prop_scores2, **weights)
|
||||
env2 = stix2.Environment().graph_similarity(
|
||||
ds, fs, prop_scores2,
|
||||
ignore_spec_version=True,
|
||||
versioning_checks=False,
|
||||
max_depth=1,
|
||||
)
|
||||
|
||||
assert round(env1) == 23
|
||||
assert round(prop_scores1["matching_score"]) == 411
|
||||
|
@ -1154,14 +1143,11 @@ def test_depth_limiting():
|
|||
"some2_ref": (33, stix2.equivalence.object.reference_check),
|
||||
"name": (34, stix2.equivalence.object.partial_string_based),
|
||||
},
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores1 = {}
|
||||
env1 = stix2.equivalence.graph.graph_similarity(mem_store1, mem_store2, prop_scores1, **custom_weights)
|
||||
env1 = stix2.equivalence.graph.graph_similarity(
|
||||
mem_store1, mem_store2, prop_scores1, **custom_weights
|
||||
)
|
||||
|
||||
assert round(env1) == 38
|
||||
assert round(prop_scores1["matching_score"]) == 300
|
||||
|
@ -1185,44 +1171,23 @@ def test_depth_limiting():
|
|||
|
||||
|
||||
def test_graph_similarity_with_duplicate_graph(ds):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores = {}
|
||||
env = stix2.Environment().graph_similarity(ds, ds, prop_scores, **weights)
|
||||
env = stix2.Environment().graph_similarity(ds, ds, prop_scores)
|
||||
assert round(env) == 100
|
||||
assert round(prop_scores["matching_score"]) == 800
|
||||
assert round(prop_scores["len_pairs"]) == 8
|
||||
|
||||
|
||||
def test_graph_similarity_with_versioning_check_on(ds2, ds):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": True,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores1 = {}
|
||||
env1 = stix2.Environment().graph_similarity(ds, ds2, prop_scores1, **weights)
|
||||
env1 = stix2.Environment().graph_similarity(ds, ds2, prop_scores1, versioning_checks=True)
|
||||
assert round(env1) == 88
|
||||
assert round(prop_scores1["matching_score"]) == 789
|
||||
assert round(prop_scores1["len_pairs"]) == 9
|
||||
|
||||
# Switching parameters
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores2 = {}
|
||||
env2 = stix2.Environment().graph_similarity(ds2, ds, prop_scores2, **weights)
|
||||
env2 = stix2.Environment().graph_similarity(ds2, ds, prop_scores2, versioning_checks=True)
|
||||
assert round(env2) == 88
|
||||
assert round(prop_scores2["matching_score"]) == 789
|
||||
assert round(prop_scores2["len_pairs"]) == 9
|
||||
|
@ -1233,29 +1198,15 @@ def test_graph_similarity_with_versioning_check_on(ds2, ds):
|
|||
|
||||
|
||||
def test_graph_similarity_with_versioning_check_off(ds2, ds):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores1 = {}
|
||||
env1 = stix2.Environment().graph_similarity(ds, ds2, prop_scores1, **weights)
|
||||
env1 = stix2.Environment().graph_similarity(ds, ds2, prop_scores1)
|
||||
assert round(env1) == 88
|
||||
assert round(prop_scores1["matching_score"]) == 789
|
||||
assert round(prop_scores1["len_pairs"]) == 9
|
||||
|
||||
# Switching parameters
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores2 = {}
|
||||
env2 = stix2.Environment().graph_similarity(ds2, ds, prop_scores2, **weights)
|
||||
env2 = stix2.Environment().graph_similarity(ds2, ds, prop_scores2)
|
||||
assert round(env2) == 88
|
||||
assert round(prop_scores2["matching_score"]) == 789
|
||||
assert round(prop_scores2["len_pairs"]) == 9
|
||||
|
@ -1266,26 +1217,12 @@ def test_graph_similarity_with_versioning_check_off(ds2, ds):
|
|||
|
||||
|
||||
def test_graph_equivalence_with_filesystem_source(ds, fs):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": True,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores1 = {}
|
||||
env1 = stix2.Environment().graph_equivalence(fs, ds, prop_scores1, **weights)
|
||||
env1 = stix2.Environment().graph_equivalence(fs, ds, prop_scores1, ignore_spec_version=True)
|
||||
|
||||
# Switching parameters
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": True,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores2 = {}
|
||||
env2 = stix2.Environment().graph_equivalence(ds, fs, prop_scores2, **weights)
|
||||
env2 = stix2.Environment().graph_equivalence(ds, fs, prop_scores2, ignore_spec_version=True)
|
||||
|
||||
assert env1 is False
|
||||
assert round(prop_scores1["matching_score"]) == 411
|
||||
|
@ -1301,41 +1238,20 @@ def test_graph_equivalence_with_filesystem_source(ds, fs):
|
|||
|
||||
|
||||
def test_graph_equivalence_with_duplicate_graph(ds):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores = {}
|
||||
env = stix2.Environment().graph_equivalence(ds, ds, prop_scores, **weights)
|
||||
env = stix2.Environment().graph_equivalence(ds, ds, prop_scores)
|
||||
assert env is True
|
||||
assert round(prop_scores["matching_score"]) == 800
|
||||
assert round(prop_scores["len_pairs"]) == 8
|
||||
|
||||
|
||||
def test_graph_equivalence_with_versioning_check_on(ds2, ds):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": True,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores1 = {}
|
||||
env1 = stix2.Environment().graph_equivalence(ds, ds2, prop_scores1, **weights)
|
||||
env1 = stix2.Environment().graph_equivalence(ds, ds2, prop_scores1, versioning_checks=True)
|
||||
|
||||
# Switching parameters
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": True,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores2 = {}
|
||||
env2 = stix2.Environment().graph_equivalence(ds2, ds, prop_scores2, **weights)
|
||||
env2 = stix2.Environment().graph_equivalence(ds2, ds, prop_scores2, versioning_checks=True)
|
||||
|
||||
assert env1 is True
|
||||
assert round(prop_scores1["matching_score"]) == 789
|
||||
|
@ -1351,26 +1267,12 @@ def test_graph_equivalence_with_versioning_check_on(ds2, ds):
|
|||
|
||||
|
||||
def test_graph_equivalence_with_versioning_check_off(ds2, ds):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores1 = {}
|
||||
env1 = stix2.Environment().graph_equivalence(ds, ds2, prop_scores1, **weights)
|
||||
env1 = stix2.Environment().graph_equivalence(ds, ds2, prop_scores1)
|
||||
|
||||
# Switching parameters
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores2 = {}
|
||||
env2 = stix2.Environment().graph_equivalence(ds2, ds, prop_scores2, **weights)
|
||||
env2 = stix2.Environment().graph_equivalence(ds2, ds, prop_scores2)
|
||||
|
||||
assert env1 is True
|
||||
assert round(prop_scores1["matching_score"]) == 789
|
||||
|
|
Loading…
Reference in New Issue