Graph Equivalence (#449)
* new packages for graph and object-based semantic equivalence * new method graphically_equivalent for Environment, move equivalence methods out * object equivalence function, methods used for object-based moved here. * new graph_equivalence methods * add notes * add support for versioning checks (default disabled) * new tests to cover graph equivalence and new methods * added more imports to environment.py to prevent breaking changes * variable changes, new fields for checks, reset depth check per call * flexibility when object is not available on graph. * refactor debug logging message * new file stix2.equivalence.graph_equivalence.rst and stix2.equivalence.object_equivalence.rst for docs * API documentation for new modules * additional text required to build docs * add more test methods for list_semantic_check an graphically_equivalent/versioning * add logging debug messages, code clean-up * include individual scoring on results dict, fix issue on list_semantic_check not keeping highest score * include results as summary in prop_scores, minor tweaks * Update __init__.py doctrings update * apply feedback from pull request - rename semantic_check to reference_check - rename modules to graph and object respectively to eliminate redundancy - remove created_by_ref and object_marking_refs from graph WEIGHTS and rebalance * update docs/ entries * add more checks, make max score based on actual objects checked instead of the full list, only create entry when type is present in WEIGHTS dictionary update tests to reflect changes * rename package patterns -> pattern * documentation, moving weights around * more documentation moving * rename WEIGHTS variable for graph_equivalencepull/1/head
parent
d17d01d165
commit
fb705c4885
|
@ -0,0 +1,5 @@
|
|||
graph
|
||||
=====
|
||||
|
||||
.. automodule:: stix2.equivalence.graph
|
||||
:members:
|
|
@ -0,0 +1,5 @@
|
|||
object
|
||||
======
|
||||
|
||||
.. automodule:: stix2.equivalence.object
|
||||
:members:
|
|
@ -0,0 +1,5 @@
|
|||
comparison
|
||||
==============
|
||||
|
||||
.. automodule:: stix2.equivalence.pattern.compare.comparison
|
||||
:members:
|
|
@ -0,0 +1,5 @@
|
|||
observation
|
||||
==============
|
||||
|
||||
.. automodule:: stix2.equivalence.pattern.compare.observation
|
||||
:members:
|
|
@ -0,0 +1,5 @@
|
|||
comparison
|
||||
==============
|
||||
|
||||
.. automodule:: stix2.equivalence.pattern.transform.comparison
|
||||
:members:
|
|
@ -0,0 +1,5 @@
|
|||
observation
|
||||
==============
|
||||
|
||||
.. automodule:: stix2.equivalence.pattern.transform.observation
|
||||
:members:
|
|
@ -0,0 +1,5 @@
|
|||
specials
|
||||
==============
|
||||
|
||||
.. automodule:: stix2.equivalence.pattern.transform.specials
|
||||
:members:
|
|
@ -1,5 +0,0 @@
|
|||
comparison
|
||||
==============
|
||||
|
||||
.. automodule:: stix2.equivalence.patterns.compare.comparison
|
||||
:members:
|
|
@ -1,5 +0,0 @@
|
|||
observation
|
||||
==============
|
||||
|
||||
.. automodule:: stix2.equivalence.patterns.compare.observation
|
||||
:members:
|
|
@ -1,5 +0,0 @@
|
|||
comparison
|
||||
==============
|
||||
|
||||
.. automodule:: stix2.equivalence.patterns.transform.comparison
|
||||
:members:
|
|
@ -1,5 +0,0 @@
|
|||
observation
|
||||
==============
|
||||
|
||||
.. automodule:: stix2.equivalence.patterns.transform.observation
|
||||
:members:
|
|
@ -1,5 +0,0 @@
|
|||
specials
|
||||
==============
|
||||
|
||||
.. automodule:: stix2.equivalence.patterns.transform.specials
|
||||
:members:
|
|
@ -0,0 +1,5 @@
|
|||
pattern
|
||||
==============
|
||||
|
||||
.. automodule:: stix2.equivalence.pattern
|
||||
:members:
|
|
@ -1,5 +0,0 @@
|
|||
patterns
|
||||
==============
|
||||
|
||||
.. automodule:: stix2.equivalence.patterns
|
||||
:members:
|
|
@ -1,13 +1,18 @@
|
|||
"""Python STIX2 Environment API."""
|
||||
import copy
|
||||
import logging
|
||||
import time
|
||||
|
||||
from .datastore import CompositeDataSource, DataStoreMixin
|
||||
from .equivalence.graph import graphically_equivalent
|
||||
from .equivalence.object import ( # noqa: F401
|
||||
check_property_present, custom_pattern_based, exact_match,
|
||||
list_reference_check, partial_external_reference_based, partial_list_based,
|
||||
partial_location_distance, partial_string_based, partial_timestamp_based,
|
||||
reference_check, semantically_equivalent,
|
||||
)
|
||||
from .parsing import parse as _parse
|
||||
from .utils import STIXdatetime, parse_into_datetime
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
# TODO: Remove all unused imports that now belong to the equivalence module in the next major release.
|
||||
# Kept for backwards compatibility.
|
||||
|
||||
|
||||
class ObjectFactory(object):
|
||||
|
@ -193,7 +198,7 @@ class Environment(DataStoreMixin):
|
|||
|
||||
@staticmethod
|
||||
def semantically_equivalent(obj1, obj2, prop_scores={}, **weight_dict):
|
||||
"""This method is meant to verify if two objects of the same type are
|
||||
"""This method verifies if two objects of the same type are
|
||||
semantically equivalent.
|
||||
|
||||
Args:
|
||||
|
@ -208,8 +213,11 @@ class Environment(DataStoreMixin):
|
|||
float: A number between 0.0 and 100.0 as a measurement of equivalence.
|
||||
|
||||
Warning:
|
||||
Course of Action, Intrusion-Set, Observed-Data, Report are not supported
|
||||
by this implementation. Indicator pattern check is also limited.
|
||||
Object types need to have property weights defined for the equivalence process.
|
||||
Otherwise, those objects will not influence the final score. The WEIGHTS
|
||||
dictionary under `stix2.equivalence.object` can give you an idea on how to add
|
||||
new entries and pass them via the `weight_dict` argument. Similarly, the values
|
||||
or methods can be fine tuned for a particular use case.
|
||||
|
||||
Note:
|
||||
Default weights_dict:
|
||||
|
@ -217,306 +225,46 @@ class Environment(DataStoreMixin):
|
|||
.. include:: ../default_sem_eq_weights.rst
|
||||
|
||||
Note:
|
||||
This implementation follows the Committee Note on semantic equivalence.
|
||||
This implementation follows the Semantic Equivalence Committee Note.
|
||||
see `the Committee Note <link here>`__.
|
||||
|
||||
"""
|
||||
weights = WEIGHTS.copy()
|
||||
return semantically_equivalent(obj1, obj2, prop_scores, **weight_dict)
|
||||
|
||||
if weight_dict:
|
||||
weights.update(weight_dict)
|
||||
@staticmethod
|
||||
def graphically_equivalent(ds1, ds2, prop_scores={}, **weight_dict):
|
||||
"""This method verifies if two graphs are semantically equivalent.
|
||||
Each DataStore can contain a connected or disconnected graph and the
|
||||
final result is weighted over the amount of objects we managed to compare.
|
||||
This approach builds on top of the object-based semantic equivalence process
|
||||
and each comparison can return a value between 0 and 100.
|
||||
|
||||
type1, type2 = obj1["type"], obj2["type"]
|
||||
ignore_spec_version = weights["_internal"]["ignore_spec_version"]
|
||||
Args:
|
||||
ds1: A DataStore object instance representing your graph
|
||||
ds2: A DataStore object instance representing your graph
|
||||
prop_scores: A dictionary that can hold individual property scores,
|
||||
weights, contributing score, matching score and sum of weights.
|
||||
weight_dict: A dictionary that can be used to override settings
|
||||
in the semantic equivalence process
|
||||
|
||||
if type1 != type2:
|
||||
raise ValueError('The objects to compare must be of the same type!')
|
||||
Returns:
|
||||
float: A number between 0.0 and 100.0 as a measurement of equivalence.
|
||||
|
||||
if ignore_spec_version is False and obj1.get("spec_version", "2.0") != obj2.get("spec_version", "2.0"):
|
||||
raise ValueError('The objects to compare must be of the same spec version!')
|
||||
Warning:
|
||||
Object types need to have property weights defined for the equivalence process.
|
||||
Otherwise, those objects will not influence the final score. The WEIGHTS
|
||||
dictionary under `stix2.equivalence.graph` can give you an idea on how to add
|
||||
new entries and pass them via the `weight_dict` argument. Similarly, the values
|
||||
or methods can be fine tuned for a particular use case.
|
||||
|
||||
try:
|
||||
weights[type1]
|
||||
except KeyError:
|
||||
logger.warning("'%s' type has no 'weights' dict specified & thus no semantic equivalence method to call!", type1)
|
||||
sum_weights = matching_score = 0
|
||||
else:
|
||||
try:
|
||||
method = weights[type1]["method"]
|
||||
except KeyError:
|
||||
logger.debug("Starting semantic equivalence process between: '%s' and '%s'", obj1["id"], obj2["id"])
|
||||
matching_score = 0.0
|
||||
sum_weights = 0.0
|
||||
Note:
|
||||
Default weights_dict:
|
||||
|
||||
for prop in weights[type1]:
|
||||
if check_property_present(prop, obj1, obj2) or prop == "longitude_latitude":
|
||||
w = weights[type1][prop][0]
|
||||
comp_funct = weights[type1][prop][1]
|
||||
.. include:: ../default_sem_eq_weights.rst
|
||||
|
||||
if comp_funct == partial_timestamp_based:
|
||||
contributing_score = w * comp_funct(obj1[prop], obj2[prop], weights[type1]["tdelta"])
|
||||
elif comp_funct == partial_location_distance:
|
||||
threshold = weights[type1]["threshold"]
|
||||
contributing_score = w * comp_funct(obj1["latitude"], obj1["longitude"], obj2["latitude"], obj2["longitude"], threshold)
|
||||
else:
|
||||
contributing_score = w * comp_funct(obj1[prop], obj2[prop])
|
||||
Note:
|
||||
This implementation follows the Semantic Equivalence Committee Note.
|
||||
see `the Committee Note <link here>`__.
|
||||
|
||||
sum_weights += w
|
||||
matching_score += contributing_score
|
||||
|
||||
prop_scores[prop] = {
|
||||
"weight": w,
|
||||
"contributing_score": contributing_score,
|
||||
}
|
||||
logger.debug("'%s' check -- weight: %s, contributing score: %s", prop, w, contributing_score)
|
||||
|
||||
prop_scores["matching_score"] = matching_score
|
||||
prop_scores["sum_weights"] = sum_weights
|
||||
logger.debug("Matching Score: %s, Sum of Weights: %s", matching_score, sum_weights)
|
||||
else:
|
||||
logger.debug("Starting semantic equivalence process between: '%s' and '%s'", obj1["id"], obj2["id"])
|
||||
try:
|
||||
matching_score, sum_weights = method(obj1, obj2, prop_scores, **weights[type1])
|
||||
except TypeError:
|
||||
# method doesn't support detailed output with prop_scores
|
||||
matching_score, sum_weights = method(obj1, obj2, **weights[type1])
|
||||
logger.debug("Matching Score: %s, Sum of Weights: %s", matching_score, sum_weights)
|
||||
|
||||
if sum_weights <= 0:
|
||||
return 0
|
||||
equivalence_score = (matching_score / sum_weights) * 100.0
|
||||
return equivalence_score
|
||||
|
||||
|
||||
def check_property_present(prop, obj1, obj2):
|
||||
"""Helper method checks if a property is present on both objects."""
|
||||
if prop in obj1 and prop in obj2:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def partial_timestamp_based(t1, t2, tdelta):
|
||||
"""Performs a timestamp-based matching via checking how close one timestamp is to another.
|
||||
|
||||
Args:
|
||||
t1: A datetime string or STIXdatetime object.
|
||||
t2: A datetime string or STIXdatetime object.
|
||||
tdelta (float): A given time delta. This number is multiplied by 86400 (1 day) to
|
||||
extend or shrink your time change tolerance.
|
||||
|
||||
Returns:
|
||||
float: Number between 0.0 and 1.0 depending on match criteria.
|
||||
|
||||
"""
|
||||
if not isinstance(t1, STIXdatetime):
|
||||
t1 = parse_into_datetime(t1)
|
||||
if not isinstance(t2, STIXdatetime):
|
||||
t2 = parse_into_datetime(t2)
|
||||
t1, t2 = time.mktime(t1.timetuple()), time.mktime(t2.timetuple())
|
||||
result = 1 - min(abs(t1 - t2) / (86400 * tdelta), 1)
|
||||
logger.debug("--\t\tpartial_timestamp_based '%s' '%s' tdelta: '%s'\tresult: '%s'", t1, t2, tdelta, result)
|
||||
return result
|
||||
|
||||
|
||||
def partial_list_based(l1, l2):
|
||||
"""Performs a partial list matching via finding the intersection between common values.
|
||||
|
||||
Args:
|
||||
l1: A list of values.
|
||||
l2: A list of values.
|
||||
|
||||
Returns:
|
||||
float: 1.0 if the value matches exactly, 0.0 otherwise.
|
||||
|
||||
"""
|
||||
l1_set, l2_set = set(l1), set(l2)
|
||||
result = len(l1_set.intersection(l2_set)) / max(len(l1), len(l2))
|
||||
logger.debug("--\t\tpartial_list_based '%s' '%s'\tresult: '%s'", l1, l2, result)
|
||||
return result
|
||||
|
||||
|
||||
def exact_match(val1, val2):
|
||||
"""Performs an exact value match based on two values
|
||||
|
||||
Args:
|
||||
val1: A value suitable for an equality test.
|
||||
val2: A value suitable for an equality test.
|
||||
|
||||
Returns:
|
||||
float: 1.0 if the value matches exactly, 0.0 otherwise.
|
||||
|
||||
"""
|
||||
result = 0.0
|
||||
if val1 == val2:
|
||||
result = 1.0
|
||||
logger.debug("--\t\texact_match '%s' '%s'\tresult: '%s'", val1, val2, result)
|
||||
return result
|
||||
|
||||
|
||||
def partial_string_based(str1, str2):
|
||||
"""Performs a partial string match using the Jaro-Winkler distance algorithm.
|
||||
|
||||
Args:
|
||||
str1: A string value to check.
|
||||
str2: A string value to check.
|
||||
|
||||
Returns:
|
||||
float: Number between 0.0 and 1.0 depending on match criteria.
|
||||
|
||||
"""
|
||||
from rapidfuzz import fuzz
|
||||
result = fuzz.token_sort_ratio(str1, str2)
|
||||
logger.debug("--\t\tpartial_string_based '%s' '%s'\tresult: '%s'", str1, str2, result)
|
||||
return result / 100.0
|
||||
|
||||
|
||||
def custom_pattern_based(pattern1, pattern2):
|
||||
"""Performs a matching on Indicator Patterns.
|
||||
|
||||
Args:
|
||||
pattern1: An Indicator pattern
|
||||
pattern2: An Indicator pattern
|
||||
|
||||
Returns:
|
||||
float: Number between 0.0 and 1.0 depending on match criteria.
|
||||
|
||||
"""
|
||||
logger.warning("Indicator pattern equivalence is not fully defined; will default to zero if not completely identical")
|
||||
return exact_match(pattern1, pattern2) # TODO: Implement pattern based equivalence
|
||||
|
||||
|
||||
def partial_external_reference_based(refs1, refs2):
|
||||
"""Performs a matching on External References.
|
||||
|
||||
Args:
|
||||
refs1: A list of external references.
|
||||
refs2: A list of external references.
|
||||
|
||||
Returns:
|
||||
float: Number between 0.0 and 1.0 depending on matches.
|
||||
|
||||
"""
|
||||
allowed = set(("veris", "cve", "capec", "mitre-attack"))
|
||||
matches = 0
|
||||
|
||||
if len(refs1) >= len(refs2):
|
||||
l1 = refs1
|
||||
l2 = refs2
|
||||
else:
|
||||
l1 = refs2
|
||||
l2 = refs1
|
||||
|
||||
for ext_ref1 in l1:
|
||||
for ext_ref2 in l2:
|
||||
sn_match = False
|
||||
ei_match = False
|
||||
url_match = False
|
||||
source_name = None
|
||||
|
||||
if check_property_present("source_name", ext_ref1, ext_ref2):
|
||||
if ext_ref1["source_name"] == ext_ref2["source_name"]:
|
||||
source_name = ext_ref1["source_name"]
|
||||
sn_match = True
|
||||
if check_property_present("external_id", ext_ref1, ext_ref2):
|
||||
if ext_ref1["external_id"] == ext_ref2["external_id"]:
|
||||
ei_match = True
|
||||
if check_property_present("url", ext_ref1, ext_ref2):
|
||||
if ext_ref1["url"] == ext_ref2["url"]:
|
||||
url_match = True
|
||||
|
||||
# Special case: if source_name is a STIX defined name and either
|
||||
# external_id or url match then its a perfect match and other entries
|
||||
# can be ignored.
|
||||
if sn_match and (ei_match or url_match) and source_name in allowed:
|
||||
result = 1.0
|
||||
logger.debug(
|
||||
"--\t\tpartial_external_reference_based '%s' '%s'\tresult: '%s'",
|
||||
refs1, refs2, result,
|
||||
)
|
||||
return result
|
||||
|
||||
# Regular check. If the source_name (not STIX-defined) or external_id or
|
||||
# url matches then we consider the entry a match.
|
||||
if (sn_match or ei_match or url_match) and source_name not in allowed:
|
||||
matches += 1
|
||||
|
||||
result = matches / max(len(refs1), len(refs2))
|
||||
logger.debug(
|
||||
"--\t\tpartial_external_reference_based '%s' '%s'\tresult: '%s'",
|
||||
refs1, refs2, result,
|
||||
)
|
||||
return result
|
||||
|
||||
|
||||
def partial_location_distance(lat1, long1, lat2, long2, threshold):
|
||||
"""Given two coordinates perform a matching based on its distance using the Haversine Formula.
|
||||
|
||||
Args:
|
||||
lat1: Latitude value for first coordinate point.
|
||||
lat2: Latitude value for second coordinate point.
|
||||
long1: Longitude value for first coordinate point.
|
||||
long2: Longitude value for second coordinate point.
|
||||
threshold (float): A kilometer measurement for the threshold distance between these two points.
|
||||
|
||||
Returns:
|
||||
float: Number between 0.0 and 1.0 depending on match.
|
||||
|
||||
"""
|
||||
from haversine import Unit, haversine
|
||||
distance = haversine((lat1, long1), (lat2, long2), unit=Unit.KILOMETERS)
|
||||
result = 1 - (distance / threshold)
|
||||
logger.debug(
|
||||
"--\t\tpartial_location_distance '%s' '%s' threshold: '%s'\tresult: '%s'",
|
||||
(lat1, long1), (lat2, long2), threshold, result,
|
||||
)
|
||||
return result
|
||||
|
||||
|
||||
# default weights used for the semantic equivalence process
|
||||
WEIGHTS = {
|
||||
"attack-pattern": {
|
||||
"name": (30, partial_string_based),
|
||||
"external_references": (70, partial_external_reference_based),
|
||||
},
|
||||
"campaign": {
|
||||
"name": (60, partial_string_based),
|
||||
"aliases": (40, partial_list_based),
|
||||
},
|
||||
"identity": {
|
||||
"name": (60, partial_string_based),
|
||||
"identity_class": (20, exact_match),
|
||||
"sectors": (20, partial_list_based),
|
||||
},
|
||||
"indicator": {
|
||||
"indicator_types": (15, partial_list_based),
|
||||
"pattern": (80, custom_pattern_based),
|
||||
"valid_from": (5, partial_timestamp_based),
|
||||
"tdelta": 1, # One day interval
|
||||
},
|
||||
"location": {
|
||||
"longitude_latitude": (34, partial_location_distance),
|
||||
"region": (33, exact_match),
|
||||
"country": (33, exact_match),
|
||||
"threshold": 1000.0,
|
||||
},
|
||||
"malware": {
|
||||
"malware_types": (20, partial_list_based),
|
||||
"name": (80, partial_string_based),
|
||||
},
|
||||
"threat-actor": {
|
||||
"name": (60, partial_string_based),
|
||||
"threat_actor_types": (20, partial_list_based),
|
||||
"aliases": (20, partial_list_based),
|
||||
},
|
||||
"tool": {
|
||||
"tool_types": (20, partial_list_based),
|
||||
"name": (80, partial_string_based),
|
||||
},
|
||||
"vulnerability": {
|
||||
"name": (30, partial_string_based),
|
||||
"external_references": (70, partial_external_reference_based),
|
||||
},
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
},
|
||||
} #: :autodoc-skip:
|
||||
"""
|
||||
return graphically_equivalent(ds1, ds2, prop_scores, **weight_dict)
|
||||
|
|
|
@ -3,7 +3,9 @@
|
|||
.. autosummary::
|
||||
:toctree: equivalence
|
||||
|
||||
patterns
|
||||
pattern
|
||||
graph
|
||||
object
|
||||
|
||||
|
|
||||
"""
|
||||
|
|
|
@ -0,0 +1,136 @@
|
|||
import logging
|
||||
|
||||
from ..object import (
|
||||
WEIGHTS, exact_match, list_reference_check, partial_string_based,
|
||||
partial_timestamp_based, reference_check, semantically_equivalent,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def graphically_equivalent(ds1, ds2, prop_scores={}, **weight_dict):
|
||||
"""This method verifies if two graphs are semantically equivalent.
|
||||
Each DataStore can contain a connected or disconnected graph and the
|
||||
final result is weighted over the amount of objects we managed to compare.
|
||||
This approach builds on top of the object-based semantic equivalence process
|
||||
and each comparison can return a value between 0 and 100.
|
||||
|
||||
Args:
|
||||
ds1: A DataStore object instance representing your graph
|
||||
ds2: A DataStore object instance representing your graph
|
||||
prop_scores: A dictionary that can hold individual property scores,
|
||||
weights, contributing score, matching score and sum of weights.
|
||||
weight_dict: A dictionary that can be used to override settings
|
||||
in the semantic equivalence process
|
||||
|
||||
Returns:
|
||||
float: A number between 0.0 and 100.0 as a measurement of equivalence.
|
||||
|
||||
Warning:
|
||||
Object types need to have property weights defined for the equivalence process.
|
||||
Otherwise, those objects will not influence the final score. The WEIGHTS
|
||||
dictionary under `stix2.equivalence.graph` can give you an idea on how to add
|
||||
new entries and pass them via the `weight_dict` argument. Similarly, the values
|
||||
or methods can be fine tuned for a particular use case.
|
||||
|
||||
Note:
|
||||
Default weights_dict:
|
||||
|
||||
.. include:: ../default_sem_eq_weights.rst
|
||||
|
||||
Note:
|
||||
This implementation follows the Semantic Equivalence Committee Note.
|
||||
see `the Committee Note <link here>`__.
|
||||
|
||||
"""
|
||||
weights = GRAPH_WEIGHTS.copy()
|
||||
|
||||
if weight_dict:
|
||||
weights.update(weight_dict)
|
||||
|
||||
results = {}
|
||||
depth = weights["_internal"]["max_depth"]
|
||||
|
||||
graph1 = ds1.query([])
|
||||
graph2 = ds2.query([])
|
||||
|
||||
graph1.sort(key=lambda x: x["type"])
|
||||
graph2.sort(key=lambda x: x["type"])
|
||||
|
||||
if len(graph1) < len(graph2):
|
||||
weights["_internal"]["ds1"] = ds1
|
||||
weights["_internal"]["ds2"] = ds2
|
||||
g1 = graph1
|
||||
g2 = graph2
|
||||
else:
|
||||
weights["_internal"]["ds1"] = ds2
|
||||
weights["_internal"]["ds2"] = ds1
|
||||
g1 = graph2
|
||||
g2 = graph1
|
||||
|
||||
for object1 in g1:
|
||||
for object2 in g2:
|
||||
if object1["type"] == object2["type"] and object1["type"] in weights:
|
||||
iprop_score = {}
|
||||
result = semantically_equivalent(object1, object2, iprop_score, **weights)
|
||||
objects1_id = object1["id"]
|
||||
weights["_internal"]["max_depth"] = depth
|
||||
|
||||
if objects1_id not in results:
|
||||
results[objects1_id] = {"matched": object2["id"], "prop_score": iprop_score, "value": result}
|
||||
elif result > results[objects1_id]["value"]:
|
||||
results[objects1_id] = {"matched": object2["id"], "prop_score": iprop_score, "value": result}
|
||||
|
||||
equivalence_score = 0
|
||||
matching_score = sum(x["value"] for x in results.values())
|
||||
sum_weights = len(results) * 100.0
|
||||
if sum_weights > 0:
|
||||
equivalence_score = (matching_score / sum_weights) * 100
|
||||
prop_scores["matching_score"] = matching_score
|
||||
prop_scores["sum_weights"] = sum_weights
|
||||
prop_scores["summary"] = results
|
||||
|
||||
logger.debug(
|
||||
"DONE\t\tSUM_WEIGHT: %.2f\tMATCHING_SCORE: %.2f\t SCORE: %.2f",
|
||||
sum_weights,
|
||||
matching_score,
|
||||
equivalence_score,
|
||||
)
|
||||
return equivalence_score
|
||||
|
||||
|
||||
# default weights used for the graph semantic equivalence process
|
||||
GRAPH_WEIGHTS = WEIGHTS.copy()
|
||||
GRAPH_WEIGHTS.update({
|
||||
"grouping": {
|
||||
"name": (20, partial_string_based),
|
||||
"context": (20, partial_string_based),
|
||||
"object_refs": (60, list_reference_check),
|
||||
},
|
||||
"relationship": {
|
||||
"relationship_type": (20, exact_match),
|
||||
"source_ref": (40, reference_check),
|
||||
"target_ref": (40, reference_check),
|
||||
},
|
||||
"report": {
|
||||
"name": (30, partial_string_based),
|
||||
"published": (10, partial_timestamp_based),
|
||||
"object_refs": (60, list_reference_check),
|
||||
"tdelta": 1, # One day interval
|
||||
},
|
||||
"sighting": {
|
||||
"first_seen": (5, partial_timestamp_based),
|
||||
"last_seen": (5, partial_timestamp_based),
|
||||
"sighting_of_ref": (40, reference_check),
|
||||
"observed_data_refs": (20, list_reference_check),
|
||||
"where_sighted_refs": (20, list_reference_check),
|
||||
"summary": (10, exact_match),
|
||||
},
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": False,
|
||||
"ds1": None,
|
||||
"ds2": None,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}) #: :autodoc-skip:
|
|
@ -0,0 +1,451 @@
|
|||
import logging
|
||||
import time
|
||||
|
||||
from ...datastore import Filter
|
||||
from ...utils import STIXdatetime, parse_into_datetime
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def semantically_equivalent(obj1, obj2, prop_scores={}, **weight_dict):
|
||||
"""This method verifies if two objects of the same type are
|
||||
semantically equivalent.
|
||||
|
||||
Args:
|
||||
obj1: A stix2 object instance
|
||||
obj2: A stix2 object instance
|
||||
prop_scores: A dictionary that can hold individual property scores,
|
||||
weights, contributing score, matching score and sum of weights.
|
||||
weight_dict: A dictionary that can be used to override settings
|
||||
in the semantic equivalence process
|
||||
|
||||
Returns:
|
||||
float: A number between 0.0 and 100.0 as a measurement of equivalence.
|
||||
|
||||
Warning:
|
||||
Object types need to have property weights defined for the equivalence process.
|
||||
Otherwise, those objects will not influence the final score. The WEIGHTS
|
||||
dictionary under `stix2.equivalence.object` can give you an idea on how to add
|
||||
new entries and pass them via the `weight_dict` argument. Similarly, the values
|
||||
or methods can be fine tuned for a particular use case.
|
||||
|
||||
Note:
|
||||
Default weights_dict:
|
||||
|
||||
.. include:: ../default_sem_eq_weights.rst
|
||||
|
||||
Note:
|
||||
This implementation follows the Semantic Equivalence Committee Note.
|
||||
see `the Committee Note <link here>`__.
|
||||
|
||||
"""
|
||||
weights = WEIGHTS.copy()
|
||||
|
||||
if weight_dict:
|
||||
weights.update(weight_dict)
|
||||
|
||||
type1, type2 = obj1["type"], obj2["type"]
|
||||
ignore_spec_version = weights["_internal"]["ignore_spec_version"]
|
||||
|
||||
if type1 != type2:
|
||||
raise ValueError('The objects to compare must be of the same type!')
|
||||
|
||||
if ignore_spec_version is False and obj1.get("spec_version", "2.0") != obj2.get("spec_version", "2.0"):
|
||||
raise ValueError('The objects to compare must be of the same spec version!')
|
||||
|
||||
try:
|
||||
weights[type1]
|
||||
except KeyError:
|
||||
logger.warning("'%s' type has no 'weights' dict specified & thus no semantic equivalence method to call!", type1)
|
||||
sum_weights = matching_score = 0
|
||||
else:
|
||||
try:
|
||||
method = weights[type1]["method"]
|
||||
except KeyError:
|
||||
logger.debug("Starting semantic equivalence process between: '%s' and '%s'", obj1["id"], obj2["id"])
|
||||
matching_score = 0.0
|
||||
sum_weights = 0.0
|
||||
|
||||
for prop in weights[type1]:
|
||||
if check_property_present(prop, obj1, obj2) or prop == "longitude_latitude":
|
||||
w = weights[type1][prop][0]
|
||||
comp_funct = weights[type1][prop][1]
|
||||
|
||||
if comp_funct == partial_timestamp_based:
|
||||
contributing_score = w * comp_funct(obj1[prop], obj2[prop], weights[type1]["tdelta"])
|
||||
elif comp_funct == partial_location_distance:
|
||||
threshold = weights[type1]["threshold"]
|
||||
contributing_score = w * comp_funct(obj1["latitude"], obj1["longitude"], obj2["latitude"], obj2["longitude"], threshold)
|
||||
elif comp_funct == reference_check or comp_funct == list_reference_check:
|
||||
max_depth = weights["_internal"]["max_depth"]
|
||||
if max_depth < 0:
|
||||
continue # prevent excessive recursion
|
||||
else:
|
||||
weights["_internal"]["max_depth"] -= 1
|
||||
ds1, ds2 = weights["_internal"]["ds1"], weights["_internal"]["ds2"]
|
||||
contributing_score = w * comp_funct(obj1[prop], obj2[prop], ds1, ds2, **weights)
|
||||
else:
|
||||
contributing_score = w * comp_funct(obj1[prop], obj2[prop])
|
||||
|
||||
sum_weights += w
|
||||
matching_score += contributing_score
|
||||
|
||||
prop_scores[prop] = {
|
||||
"weight": w,
|
||||
"contributing_score": contributing_score,
|
||||
}
|
||||
logger.debug("'%s' check -- weight: %s, contributing score: %s", prop, w, contributing_score)
|
||||
|
||||
prop_scores["matching_score"] = matching_score
|
||||
prop_scores["sum_weights"] = sum_weights
|
||||
logger.debug("Matching Score: %s, Sum of Weights: %s", matching_score, sum_weights)
|
||||
else:
|
||||
logger.debug("Starting semantic equivalence process between: '%s' and '%s'", obj1["id"], obj2["id"])
|
||||
try:
|
||||
matching_score, sum_weights = method(obj1, obj2, prop_scores, **weights[type1])
|
||||
except TypeError:
|
||||
# method doesn't support detailed output with prop_scores
|
||||
matching_score, sum_weights = method(obj1, obj2, **weights[type1])
|
||||
logger.debug("Matching Score: %s, Sum of Weights: %s", matching_score, sum_weights)
|
||||
|
||||
if sum_weights <= 0:
|
||||
return 0
|
||||
equivalence_score = (matching_score / sum_weights) * 100.0
|
||||
return equivalence_score
|
||||
|
||||
|
||||
def check_property_present(prop, obj1, obj2):
|
||||
"""Helper method checks if a property is present on both objects."""
|
||||
if prop in obj1 and prop in obj2:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def partial_timestamp_based(t1, t2, tdelta):
|
||||
"""Performs a timestamp-based matching via checking how close one timestamp is to another.
|
||||
|
||||
Args:
|
||||
t1: A datetime string or STIXdatetime object.
|
||||
t2: A datetime string or STIXdatetime object.
|
||||
tdelta (float): A given time delta. This number is multiplied by 86400 (1 day) to
|
||||
extend or shrink your time change tolerance.
|
||||
|
||||
Returns:
|
||||
float: Number between 0.0 and 1.0 depending on match criteria.
|
||||
|
||||
"""
|
||||
if not isinstance(t1, STIXdatetime):
|
||||
t1 = parse_into_datetime(t1)
|
||||
if not isinstance(t2, STIXdatetime):
|
||||
t2 = parse_into_datetime(t2)
|
||||
t1, t2 = time.mktime(t1.timetuple()), time.mktime(t2.timetuple())
|
||||
result = 1 - min(abs(t1 - t2) / (86400 * tdelta), 1)
|
||||
logger.debug("--\t\tpartial_timestamp_based '%s' '%s' tdelta: '%s'\tresult: '%s'", t1, t2, tdelta, result)
|
||||
return result
|
||||
|
||||
|
||||
def partial_list_based(l1, l2):
|
||||
"""Performs a partial list matching via finding the intersection between common values.
|
||||
|
||||
Args:
|
||||
l1: A list of values.
|
||||
l2: A list of values.
|
||||
|
||||
Returns:
|
||||
float: 1.0 if the value matches exactly, 0.0 otherwise.
|
||||
|
||||
"""
|
||||
l1_set, l2_set = set(l1), set(l2)
|
||||
result = len(l1_set.intersection(l2_set)) / max(len(l1_set), len(l2_set))
|
||||
logger.debug("--\t\tpartial_list_based '%s' '%s'\tresult: '%s'", l1, l2, result)
|
||||
return result
|
||||
|
||||
|
||||
def exact_match(val1, val2):
|
||||
"""Performs an exact value match based on two values
|
||||
|
||||
Args:
|
||||
val1: A value suitable for an equality test.
|
||||
val2: A value suitable for an equality test.
|
||||
|
||||
Returns:
|
||||
float: 1.0 if the value matches exactly, 0.0 otherwise.
|
||||
|
||||
"""
|
||||
result = 0.0
|
||||
if val1 == val2:
|
||||
result = 1.0
|
||||
logger.debug("--\t\texact_match '%s' '%s'\tresult: '%s'", val1, val2, result)
|
||||
return result
|
||||
|
||||
|
||||
def partial_string_based(str1, str2):
|
||||
"""Performs a partial string match using the Jaro-Winkler distance algorithm.
|
||||
|
||||
Args:
|
||||
str1: A string value to check.
|
||||
str2: A string value to check.
|
||||
|
||||
Returns:
|
||||
float: Number between 0.0 and 1.0 depending on match criteria.
|
||||
|
||||
"""
|
||||
from rapidfuzz import fuzz
|
||||
result = fuzz.token_sort_ratio(str1, str2)
|
||||
logger.debug("--\t\tpartial_string_based '%s' '%s'\tresult: '%s'", str1, str2, result)
|
||||
return result / 100.0
|
||||
|
||||
|
||||
def custom_pattern_based(pattern1, pattern2):
|
||||
"""Performs a matching on Indicator Patterns.
|
||||
|
||||
Args:
|
||||
pattern1: An Indicator pattern
|
||||
pattern2: An Indicator pattern
|
||||
|
||||
Returns:
|
||||
float: Number between 0.0 and 1.0 depending on match criteria.
|
||||
|
||||
"""
|
||||
logger.warning("Indicator pattern equivalence is not fully defined; will default to zero if not completely identical")
|
||||
return exact_match(pattern1, pattern2) # TODO: Implement pattern based equivalence
|
||||
|
||||
|
||||
def partial_external_reference_based(refs1, refs2):
|
||||
"""Performs a matching on External References.
|
||||
|
||||
Args:
|
||||
refs1: A list of external references.
|
||||
refs2: A list of external references.
|
||||
|
||||
Returns:
|
||||
float: Number between 0.0 and 1.0 depending on matches.
|
||||
|
||||
"""
|
||||
allowed = {"veris", "cve", "capec", "mitre-attack"}
|
||||
matches = 0
|
||||
|
||||
if len(refs1) >= len(refs2):
|
||||
l1 = refs1
|
||||
l2 = refs2
|
||||
else:
|
||||
l1 = refs2
|
||||
l2 = refs1
|
||||
|
||||
for ext_ref1 in l1:
|
||||
for ext_ref2 in l2:
|
||||
sn_match = False
|
||||
ei_match = False
|
||||
url_match = False
|
||||
source_name = None
|
||||
|
||||
if check_property_present("source_name", ext_ref1, ext_ref2):
|
||||
if ext_ref1["source_name"] == ext_ref2["source_name"]:
|
||||
source_name = ext_ref1["source_name"]
|
||||
sn_match = True
|
||||
if check_property_present("external_id", ext_ref1, ext_ref2):
|
||||
if ext_ref1["external_id"] == ext_ref2["external_id"]:
|
||||
ei_match = True
|
||||
if check_property_present("url", ext_ref1, ext_ref2):
|
||||
if ext_ref1["url"] == ext_ref2["url"]:
|
||||
url_match = True
|
||||
|
||||
# Special case: if source_name is a STIX defined name and either
|
||||
# external_id or url match then its a perfect match and other entries
|
||||
# can be ignored.
|
||||
if sn_match and (ei_match or url_match) and source_name in allowed:
|
||||
result = 1.0
|
||||
logger.debug(
|
||||
"--\t\tpartial_external_reference_based '%s' '%s'\tresult: '%s'",
|
||||
refs1, refs2, result,
|
||||
)
|
||||
return result
|
||||
|
||||
# Regular check. If the source_name (not STIX-defined) or external_id or
|
||||
# url matches then we consider the entry a match.
|
||||
if (sn_match or ei_match or url_match) and source_name not in allowed:
|
||||
matches += 1
|
||||
|
||||
result = matches / max(len(refs1), len(refs2))
|
||||
logger.debug(
|
||||
"--\t\tpartial_external_reference_based '%s' '%s'\tresult: '%s'",
|
||||
refs1, refs2, result,
|
||||
)
|
||||
return result
|
||||
|
||||
|
||||
def partial_location_distance(lat1, long1, lat2, long2, threshold):
|
||||
"""Given two coordinates perform a matching based on its distance using the Haversine Formula.
|
||||
|
||||
Args:
|
||||
lat1: Latitude value for first coordinate point.
|
||||
lat2: Latitude value for second coordinate point.
|
||||
long1: Longitude value for first coordinate point.
|
||||
long2: Longitude value for second coordinate point.
|
||||
threshold (float): A kilometer measurement for the threshold distance between these two points.
|
||||
|
||||
Returns:
|
||||
float: Number between 0.0 and 1.0 depending on match.
|
||||
|
||||
"""
|
||||
from haversine import Unit, haversine
|
||||
distance = haversine((lat1, long1), (lat2, long2), unit=Unit.KILOMETERS)
|
||||
result = 1 - (distance / threshold)
|
||||
logger.debug(
|
||||
"--\t\tpartial_location_distance '%s' '%s' threshold: '%s'\tresult: '%s'",
|
||||
(lat1, long1), (lat2, long2), threshold, result,
|
||||
)
|
||||
return result
|
||||
|
||||
|
||||
def _versioned_checks(ref1, ref2, ds1, ds2, **weights):
|
||||
"""Checks multiple object versions if present in graph.
|
||||
Maximizes for the semantic equivalence score of a particular version."""
|
||||
results = {}
|
||||
objects1 = ds1.query([Filter("id", "=", ref1)])
|
||||
objects2 = ds2.query([Filter("id", "=", ref2)])
|
||||
|
||||
if len(objects1) > 0 and len(objects2) > 0:
|
||||
for o1 in objects1:
|
||||
for o2 in objects2:
|
||||
result = semantically_equivalent(o1, o2, **weights)
|
||||
if ref1 not in results:
|
||||
results[ref1] = {"matched": ref2, "value": result}
|
||||
elif result > results[ref1]["value"]:
|
||||
results[ref1] = {"matched": ref2, "value": result}
|
||||
result = results.get(ref1, {}).get("value", 0.0)
|
||||
logger.debug(
|
||||
"--\t\t_versioned_checks '%s' '%s'\tresult: '%s'",
|
||||
ref1, ref2, result,
|
||||
)
|
||||
return result
|
||||
|
||||
|
||||
def reference_check(ref1, ref2, ds1, ds2, **weights):
|
||||
"""For two references, de-reference the object and perform object-based
|
||||
semantic equivalence. The score influences the result of an edge check."""
|
||||
type1, type2 = ref1.split("--")[0], ref2.split("--")[0]
|
||||
result = 0.0
|
||||
|
||||
if type1 == type2:
|
||||
if weights["_internal"]["versioning_checks"]:
|
||||
result = _versioned_checks(ref1, ref2, ds1, ds2, **weights) / 100.0
|
||||
else:
|
||||
o1, o2 = ds1.get(ref1), ds2.get(ref2)
|
||||
if o1 and o2:
|
||||
result = semantically_equivalent(o1, o2, **weights) / 100.0
|
||||
|
||||
logger.debug(
|
||||
"--\t\treference_check '%s' '%s'\tresult: '%s'",
|
||||
ref1, ref2, result,
|
||||
)
|
||||
return result
|
||||
|
||||
|
||||
def list_reference_check(refs1, refs2, ds1, ds2, **weights):
|
||||
"""For objects that contain multiple references (i.e., object_refs) perform
|
||||
the same de-reference procedure and perform object-based semantic equivalence.
|
||||
The score influences the objects containing these references. The result is
|
||||
weighted on the amount of unique objects that could 1) be de-referenced 2) """
|
||||
results = {}
|
||||
if len(refs1) >= len(refs2):
|
||||
l1 = refs1
|
||||
l2 = refs2
|
||||
b1 = ds1
|
||||
b2 = ds2
|
||||
else:
|
||||
l1 = refs2
|
||||
l2 = refs1
|
||||
b1 = ds2
|
||||
b2 = ds1
|
||||
|
||||
l1.sort()
|
||||
l2.sort()
|
||||
|
||||
for ref1 in l1:
|
||||
for ref2 in l2:
|
||||
type1, type2 = ref1.split("--")[0], ref2.split("--")[0]
|
||||
if type1 == type2:
|
||||
score = reference_check(ref1, ref2, b1, b2, **weights) * 100.0
|
||||
|
||||
if ref1 not in results:
|
||||
results[ref1] = {"matched": ref2, "value": score}
|
||||
elif score > results[ref1]["value"]:
|
||||
results[ref1] = {"matched": ref2, "value": score}
|
||||
|
||||
result = 0.0
|
||||
total_sum = sum(x["value"] for x in results.values())
|
||||
max_score = len(results) * 100.0
|
||||
|
||||
if max_score > 0:
|
||||
result = total_sum / max_score
|
||||
|
||||
logger.debug(
|
||||
"--\t\tlist_reference_check '%s' '%s'\ttotal_sum: '%s'\tmax_score: '%s'\tresult: '%s'",
|
||||
refs1, refs2, total_sum, max_score, result,
|
||||
)
|
||||
return result
|
||||
|
||||
|
||||
# default weights used for the semantic equivalence process
|
||||
WEIGHTS = {
|
||||
"attack-pattern": {
|
||||
"name": (30, partial_string_based),
|
||||
"external_references": (70, partial_external_reference_based),
|
||||
},
|
||||
"campaign": {
|
||||
"name": (60, partial_string_based),
|
||||
"aliases": (40, partial_list_based),
|
||||
},
|
||||
"course-of-action": {
|
||||
"name": (60, partial_string_based),
|
||||
"external_references": (40, partial_external_reference_based),
|
||||
},
|
||||
"identity": {
|
||||
"name": (60, partial_string_based),
|
||||
"identity_class": (20, exact_match),
|
||||
"sectors": (20, partial_list_based),
|
||||
},
|
||||
"indicator": {
|
||||
"indicator_types": (15, partial_list_based),
|
||||
"pattern": (80, custom_pattern_based),
|
||||
"valid_from": (5, partial_timestamp_based),
|
||||
"tdelta": 1, # One day interval
|
||||
},
|
||||
"intrusion-set": {
|
||||
"name": (20, partial_string_based),
|
||||
"external_references": (60, partial_external_reference_based),
|
||||
"aliases": (20, partial_list_based),
|
||||
},
|
||||
"location": {
|
||||
"longitude_latitude": (34, partial_location_distance),
|
||||
"region": (33, exact_match),
|
||||
"country": (33, exact_match),
|
||||
"threshold": 1000.0,
|
||||
},
|
||||
"malware": {
|
||||
"malware_types": (20, partial_list_based),
|
||||
"name": (80, partial_string_based),
|
||||
},
|
||||
"marking-definition": {
|
||||
"name": (20, exact_match),
|
||||
"definition": (60, exact_match),
|
||||
"definition_type": (20, exact_match),
|
||||
},
|
||||
"threat-actor": {
|
||||
"name": (60, partial_string_based),
|
||||
"threat_actor_types": (20, partial_list_based),
|
||||
"aliases": (20, partial_list_based),
|
||||
},
|
||||
"tool": {
|
||||
"tool_types": (20, partial_list_based),
|
||||
"name": (80, partial_string_based),
|
||||
},
|
||||
"vulnerability": {
|
||||
"name": (30, partial_string_based),
|
||||
"external_references": (70, partial_external_reference_based),
|
||||
},
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
},
|
||||
} #: :autodoc-skip:
|
|
@ -10,13 +10,13 @@
|
|||
"""
|
||||
|
||||
import stix2
|
||||
from stix2.equivalence.patterns.compare.observation import (
|
||||
from stix2.equivalence.pattern.compare.observation import (
|
||||
observation_expression_cmp,
|
||||
)
|
||||
from stix2.equivalence.patterns.transform import (
|
||||
from stix2.equivalence.pattern.transform import (
|
||||
ChainTransformer, SettleTransformer,
|
||||
)
|
||||
from stix2.equivalence.patterns.transform.observation import (
|
||||
from stix2.equivalence.pattern.transform.observation import (
|
||||
AbsorptionTransformer, CanonicalizeComparisonExpressionsTransformer,
|
||||
DNFTransformer, FlattenTransformer, OrderDedupeTransformer,
|
||||
)
|
|
@ -4,7 +4,7 @@ Comparison utilities for STIX pattern comparison expressions.
|
|||
import base64
|
||||
import functools
|
||||
|
||||
from stix2.equivalence.patterns.compare import generic_cmp, iter_lex_cmp
|
||||
from stix2.equivalence.pattern.compare import generic_cmp, iter_lex_cmp
|
||||
from stix2.patterns import (
|
||||
AndBooleanExpression, BinaryConstant, BooleanConstant, FloatConstant,
|
||||
HexConstant, IntegerConstant, ListConstant, ListObjectPathComponent,
|
|
@ -1,8 +1,8 @@
|
|||
"""
|
||||
Comparison utilities for STIX pattern observation expressions.
|
||||
"""
|
||||
from stix2.equivalence.patterns.compare import generic_cmp, iter_lex_cmp
|
||||
from stix2.equivalence.patterns.compare.comparison import (
|
||||
from stix2.equivalence.pattern.compare import generic_cmp, iter_lex_cmp
|
||||
from stix2.equivalence.pattern.compare.comparison import (
|
||||
comparison_expression_cmp, generic_constant_cmp,
|
||||
)
|
||||
from stix2.patterns import (
|
|
@ -4,12 +4,12 @@ Transformation utilities for STIX pattern comparison expressions.
|
|||
import functools
|
||||
import itertools
|
||||
|
||||
from stix2.equivalence.patterns.compare import iter_in, iter_lex_cmp
|
||||
from stix2.equivalence.patterns.compare.comparison import (
|
||||
from stix2.equivalence.pattern.compare import iter_in, iter_lex_cmp
|
||||
from stix2.equivalence.pattern.compare.comparison import (
|
||||
comparison_expression_cmp,
|
||||
)
|
||||
from stix2.equivalence.patterns.transform import Transformer
|
||||
from stix2.equivalence.patterns.transform.specials import (
|
||||
from stix2.equivalence.pattern.transform import Transformer
|
||||
from stix2.equivalence.pattern.transform.specials import (
|
||||
ipv4_addr, ipv6_addr, windows_reg_key,
|
||||
)
|
||||
from stix2.patterns import (
|
|
@ -4,23 +4,23 @@ Transformation utilities for STIX pattern observation expressions.
|
|||
import functools
|
||||
import itertools
|
||||
|
||||
from stix2.equivalence.patterns.compare import iter_in, iter_lex_cmp
|
||||
from stix2.equivalence.patterns.compare.observation import (
|
||||
from stix2.equivalence.pattern.compare import iter_in, iter_lex_cmp
|
||||
from stix2.equivalence.pattern.compare.observation import (
|
||||
observation_expression_cmp,
|
||||
)
|
||||
from stix2.equivalence.patterns.transform import (
|
||||
from stix2.equivalence.pattern.transform import (
|
||||
ChainTransformer, SettleTransformer, Transformer,
|
||||
)
|
||||
from stix2.equivalence.patterns.transform.comparison import (
|
||||
from stix2.equivalence.pattern.transform.comparison import (
|
||||
SpecialValueCanonicalization,
|
||||
)
|
||||
from stix2.equivalence.patterns.transform.comparison import \
|
||||
from stix2.equivalence.pattern.transform.comparison import \
|
||||
AbsorptionTransformer as CAbsorptionTransformer
|
||||
from stix2.equivalence.patterns.transform.comparison import \
|
||||
from stix2.equivalence.pattern.transform.comparison import \
|
||||
DNFTransformer as CDNFTransformer
|
||||
from stix2.equivalence.patterns.transform.comparison import \
|
||||
from stix2.equivalence.pattern.transform.comparison import \
|
||||
FlattenTransformer as CFlattenTransformer
|
||||
from stix2.equivalence.patterns.transform.comparison import \
|
||||
from stix2.equivalence.pattern.transform.comparison import \
|
||||
OrderDedupeTransformer as COrderDedupeTransformer
|
||||
from stix2.patterns import (
|
||||
AndObservationExpression, FollowedByObservationExpression,
|
|
@ -3,7 +3,7 @@ Some simple comparison expression canonicalization functions.
|
|||
"""
|
||||
import socket
|
||||
|
||||
from stix2.equivalence.patterns.compare.comparison import (
|
||||
from stix2.equivalence.pattern.compare.comparison import (
|
||||
object_path_to_raw_values,
|
||||
)
|
||||
|
|
@ -1,6 +1,6 @@
|
|||
import pytest
|
||||
|
||||
from stix2.equivalence.patterns import (
|
||||
from stix2.equivalence.pattern import (
|
||||
equivalent_patterns, find_equivalent_patterns,
|
||||
)
|
||||
|
||||
|
|
|
@ -1,6 +1,10 @@
|
|||
import os
|
||||
|
||||
import pytest
|
||||
|
||||
import stix2
|
||||
import stix2.equivalence.graph
|
||||
import stix2.equivalence.object
|
||||
|
||||
from .constants import (
|
||||
CAMPAIGN_ID, CAMPAIGN_KWARGS, FAKE_TIME, IDENTITY_ID, IDENTITY_KWARGS,
|
||||
|
@ -8,6 +12,8 @@ from .constants import (
|
|||
RELATIONSHIP_IDS,
|
||||
)
|
||||
|
||||
FS_PATH = os.path.join(os.path.dirname(os.path.realpath(__file__)), "stix2_data")
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def ds():
|
||||
|
@ -18,7 +24,42 @@ def ds():
|
|||
rel1 = stix2.v20.Relationship(ind, 'indicates', mal, id=RELATIONSHIP_IDS[0])
|
||||
rel2 = stix2.v20.Relationship(mal, 'targets', idy, id=RELATIONSHIP_IDS[1])
|
||||
rel3 = stix2.v20.Relationship(cam, 'uses', mal, id=RELATIONSHIP_IDS[2])
|
||||
stix_objs = [cam, idy, ind, mal, rel1, rel2, rel3]
|
||||
reprt = stix2.v20.Report(
|
||||
name="Malware Report",
|
||||
published="2021-05-09T08:22:22Z",
|
||||
labels=["campaign"],
|
||||
object_refs=[mal.id, rel1.id, ind.id],
|
||||
)
|
||||
stix_objs = [cam, idy, ind, mal, rel1, rel2, rel3, reprt]
|
||||
yield stix2.MemoryStore(stix_objs)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def ds2():
|
||||
cam = stix2.v20.Campaign(id=CAMPAIGN_ID, **CAMPAIGN_KWARGS)
|
||||
idy = stix2.v20.Identity(id=IDENTITY_ID, **IDENTITY_KWARGS)
|
||||
ind = stix2.v20.Indicator(id=INDICATOR_ID, created_by_ref=idy.id, **INDICATOR_KWARGS)
|
||||
indv2 = ind.new_version(external_references=[{
|
||||
"source_name": "unknown",
|
||||
"url": "https://examplewebsite.com/",
|
||||
}])
|
||||
mal = stix2.v20.Malware(id=MALWARE_ID, created_by_ref=idy.id, **MALWARE_KWARGS)
|
||||
malv2 = mal.new_version(external_references=[{
|
||||
"source_name": "unknown",
|
||||
"url": "https://examplewebsite2.com/",
|
||||
}])
|
||||
rel1 = stix2.v20.Relationship(ind, 'indicates', mal, id=RELATIONSHIP_IDS[0])
|
||||
rel2 = stix2.v20.Relationship(mal, 'targets', idy, id=RELATIONSHIP_IDS[1])
|
||||
rel3 = stix2.v20.Relationship(cam, 'uses', mal, id=RELATIONSHIP_IDS[2])
|
||||
stix_objs = [cam, idy, ind, indv2, mal, malv2, rel1, rel2, rel3]
|
||||
reprt = stix2.v20.Report(
|
||||
created_by_ref=idy.id,
|
||||
name="example",
|
||||
labels=["campaign"],
|
||||
published="2021-04-09T08:22:22Z",
|
||||
object_refs=stix_objs,
|
||||
)
|
||||
stix_objs.append(reprt)
|
||||
yield stix2.MemoryStore(stix_objs)
|
||||
|
||||
|
||||
|
@ -370,3 +411,144 @@ def test_related_to_by_target(ds):
|
|||
assert len(resp) == 2
|
||||
assert any(x['id'] == CAMPAIGN_ID for x in resp)
|
||||
assert any(x['id'] == INDICATOR_ID for x in resp)
|
||||
|
||||
|
||||
def test_versioned_checks(ds, ds2):
|
||||
weights = stix2.equivalence.graph.GRAPH_WEIGHTS.copy()
|
||||
weights.update({
|
||||
"_internal": {
|
||||
"ignore_spec_version": True,
|
||||
"versioning_checks": True,
|
||||
"max_depth": 1,
|
||||
},
|
||||
})
|
||||
score = stix2.equivalence.object._versioned_checks(INDICATOR_ID, INDICATOR_ID, ds, ds2, **weights)
|
||||
assert round(score) == 100
|
||||
|
||||
|
||||
def test_semantic_check_with_versioning(ds, ds2):
|
||||
weights = stix2.equivalence.graph.GRAPH_WEIGHTS.copy()
|
||||
weights.update({
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": True,
|
||||
"ds1": ds,
|
||||
"ds2": ds2,
|
||||
"max_depth": 1,
|
||||
},
|
||||
})
|
||||
ind = stix2.v20.Indicator(
|
||||
**dict(
|
||||
labels=["malicious-activity"],
|
||||
pattern="[file:hashes.'SHA-256' = 'e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855']",
|
||||
valid_from="2017-01-01T12:34:56Z",
|
||||
external_references=[
|
||||
{
|
||||
"source_name": "unknown",
|
||||
"url": "https://examplewebsite2.com/",
|
||||
},
|
||||
],
|
||||
object_marking_refs=[stix2.v20.TLP_WHITE],
|
||||
)
|
||||
)
|
||||
ds.add(ind)
|
||||
score = stix2.equivalence.object.reference_check(ind.id, INDICATOR_ID, ds, ds2, **weights)
|
||||
assert round(score) == 0 # Since pattern is different score is really low
|
||||
|
||||
|
||||
def test_list_semantic_check(ds, ds2):
|
||||
weights = stix2.equivalence.graph.GRAPH_WEIGHTS.copy()
|
||||
weights.update({
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": False,
|
||||
"ds1": ds,
|
||||
"ds2": ds2,
|
||||
"max_depth": 1,
|
||||
},
|
||||
})
|
||||
object_refs1 = [
|
||||
"malware--9c4638ec-f1de-4ddb-abf4-1b760417654e",
|
||||
"relationship--06520621-5352-4e6a-b976-e8fa3d437ffd",
|
||||
"indicator--a740531e-63ff-4e49-a9e1-a0a3eed0e3e7",
|
||||
]
|
||||
object_refs2 = [
|
||||
"campaign--8e2e2d2b-17d4-4cbf-938f-98ee46b3cd3f",
|
||||
"identity--311b2d2d-f010-4473-83ec-1edf84858f4c",
|
||||
"indicator--a740531e-63ff-4e49-a9e1-a0a3eed0e3e7",
|
||||
"malware--9c4638ec-f1de-4ddb-abf4-1b760417654e",
|
||||
"malware--9c4638ec-f1de-4ddb-abf4-1b760417654e",
|
||||
"relationship--06520621-5352-4e6a-b976-e8fa3d437ffd",
|
||||
"relationship--181c9c09-43e6-45dd-9374-3bec192f05ef",
|
||||
"relationship--a0cbb21c-8daf-4a7f-96aa-7155a4ef8f70",
|
||||
]
|
||||
|
||||
score = stix2.equivalence.object.list_reference_check(
|
||||
object_refs1,
|
||||
object_refs2,
|
||||
ds,
|
||||
ds2,
|
||||
**weights,
|
||||
)
|
||||
assert round(score) == 1
|
||||
|
||||
|
||||
def test_graph_equivalence_with_filesystem_source(ds):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": True,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores = {}
|
||||
fs = stix2.FileSystemSource(FS_PATH)
|
||||
env = stix2.Environment().graphically_equivalent(fs, ds, prop_scores, **weights)
|
||||
assert round(env) == 28
|
||||
assert round(prop_scores["matching_score"]) == 139
|
||||
assert round(prop_scores["sum_weights"]) == 500
|
||||
|
||||
|
||||
def test_graph_equivalence_with_duplicate_graph(ds):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores = {}
|
||||
env = stix2.Environment().graphically_equivalent(ds, ds, prop_scores, **weights)
|
||||
assert round(env) == 100
|
||||
assert round(prop_scores["matching_score"]) == 800
|
||||
assert round(prop_scores["sum_weights"]) == 800
|
||||
|
||||
|
||||
def test_graph_equivalence_with_versioning_check_on(ds2, ds):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": True,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores = {}
|
||||
env = stix2.Environment().graphically_equivalent(ds, ds2, prop_scores, **weights)
|
||||
assert round(env) == 93
|
||||
assert round(prop_scores["matching_score"]) == 745
|
||||
assert round(prop_scores["sum_weights"]) == 800
|
||||
|
||||
|
||||
def test_graph_equivalence_with_versioning_check_off(ds2, ds):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores = {}
|
||||
env = stix2.Environment().graphically_equivalent(ds, ds2, prop_scores, **weights)
|
||||
assert round(env) == 93
|
||||
assert round(prop_scores["matching_score"]) == 745
|
||||
assert round(prop_scores["sum_weights"]) == 800
|
||||
|
|
|
@ -4,7 +4,7 @@ Pattern equivalence unit tests which use STIX 2.0-specific pattern features
|
|||
|
||||
import pytest
|
||||
|
||||
from stix2.equivalence.patterns import equivalent_patterns
|
||||
from stix2.equivalence.pattern import equivalent_patterns
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
|
|
|
@ -1,7 +1,11 @@
|
|||
import os
|
||||
|
||||
import pytest
|
||||
|
||||
import stix2
|
||||
import stix2.environment
|
||||
import stix2.equivalence.graph
|
||||
import stix2.equivalence.object
|
||||
import stix2.exceptions
|
||||
|
||||
from .constants import (
|
||||
|
@ -12,6 +16,8 @@ from .constants import (
|
|||
VULNERABILITY_ID, VULNERABILITY_KWARGS,
|
||||
)
|
||||
|
||||
FS_PATH = os.path.join(os.path.dirname(os.path.realpath(__file__)), "stix2_data")
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def ds():
|
||||
|
@ -22,7 +28,46 @@ def ds():
|
|||
rel1 = stix2.v21.Relationship(ind, 'indicates', mal, id=RELATIONSHIP_IDS[0])
|
||||
rel2 = stix2.v21.Relationship(mal, 'targets', idy, id=RELATIONSHIP_IDS[1])
|
||||
rel3 = stix2.v21.Relationship(cam, 'uses', mal, id=RELATIONSHIP_IDS[2])
|
||||
stix_objs = [cam, idy, ind, mal, rel1, rel2, rel3]
|
||||
reprt = stix2.v21.Report(
|
||||
name="Malware Report", published="2021-05-09T08:22:22Z",
|
||||
object_refs=[mal.id, rel1.id, ind.id],
|
||||
)
|
||||
stix_objs = [cam, idy, ind, mal, rel1, rel2, rel3, reprt]
|
||||
yield stix2.MemoryStore(stix_objs)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def ds2():
|
||||
cam = stix2.v21.Campaign(id=CAMPAIGN_ID, **CAMPAIGN_KWARGS)
|
||||
idy = stix2.v21.Identity(id=IDENTITY_ID, **IDENTITY_KWARGS)
|
||||
ind = stix2.v21.Indicator(id=INDICATOR_ID, created_by_ref=idy.id, **INDICATOR_KWARGS)
|
||||
indv2 = ind.new_version(
|
||||
external_references=[
|
||||
{
|
||||
"source_name": "unknown",
|
||||
"url": "https://examplewebsite.com/",
|
||||
},
|
||||
],
|
||||
object_marking_refs=[stix2.v21.TLP_WHITE],
|
||||
)
|
||||
mal = stix2.v21.Malware(id=MALWARE_ID, created_by_ref=idy.id, **MALWARE_KWARGS)
|
||||
malv2 = mal.new_version(
|
||||
external_references=[
|
||||
{
|
||||
"source_name": "unknown",
|
||||
"url": "https://examplewebsite2.com/",
|
||||
},
|
||||
],
|
||||
)
|
||||
rel1 = stix2.v21.Relationship(ind, 'indicates', mal, id=RELATIONSHIP_IDS[0])
|
||||
rel2 = stix2.v21.Relationship(mal, 'targets', idy, id=RELATIONSHIP_IDS[1])
|
||||
rel3 = stix2.v21.Relationship(cam, 'uses', mal, id=RELATIONSHIP_IDS[2])
|
||||
stix_objs = [cam, idy, ind, indv2, mal, malv2, rel1, rel2, rel3]
|
||||
reprt = stix2.v21.Report(
|
||||
created_by_ref=idy.id, name="example",
|
||||
published="2021-04-09T08:22:22Z", object_refs=stix_objs,
|
||||
)
|
||||
stix_objs.append(reprt)
|
||||
yield stix2.MemoryStore(stix_objs)
|
||||
|
||||
|
||||
|
@ -820,3 +865,145 @@ def test_semantic_equivalence_prop_scores_method_provided():
|
|||
assert len(prop_scores) == 2
|
||||
assert prop_scores["matching_score"] == 96.0
|
||||
assert prop_scores["sum_weights"] == 100.0
|
||||
|
||||
|
||||
def test_versioned_checks(ds, ds2):
|
||||
weights = stix2.equivalence.graph.GRAPH_WEIGHTS.copy()
|
||||
weights.update({
|
||||
"_internal": {
|
||||
"ignore_spec_version": True,
|
||||
"versioning_checks": True,
|
||||
"max_depth": 1,
|
||||
},
|
||||
})
|
||||
score = stix2.equivalence.object._versioned_checks(INDICATOR_ID, INDICATOR_ID, ds, ds2, **weights)
|
||||
assert round(score) == 100
|
||||
|
||||
|
||||
def test_semantic_check_with_versioning(ds, ds2):
|
||||
weights = stix2.equivalence.graph.GRAPH_WEIGHTS.copy()
|
||||
weights.update({
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": True,
|
||||
"ds1": ds,
|
||||
"ds2": ds2,
|
||||
"max_depth": 1,
|
||||
},
|
||||
})
|
||||
ind = stix2.v21.Indicator(
|
||||
**dict(
|
||||
indicator_types=["malicious-activity"],
|
||||
pattern_type="stix",
|
||||
pattern="[file:hashes.'SHA-256' = 'e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855']",
|
||||
valid_from="2017-01-01T12:34:56Z",
|
||||
external_references=[
|
||||
{
|
||||
"source_name": "unknown",
|
||||
"url": "https://examplewebsite2.com/",
|
||||
},
|
||||
],
|
||||
object_marking_refs=[stix2.v21.TLP_WHITE],
|
||||
)
|
||||
)
|
||||
ds.add(ind)
|
||||
score = stix2.equivalence.object.reference_check(ind.id, INDICATOR_ID, ds, ds2, **weights)
|
||||
assert round(score) == 0 # Since pattern is different score is really low
|
||||
|
||||
|
||||
def test_list_semantic_check(ds, ds2):
|
||||
weights = stix2.equivalence.graph.GRAPH_WEIGHTS.copy()
|
||||
weights.update({
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": False,
|
||||
"ds1": ds,
|
||||
"ds2": ds2,
|
||||
"max_depth": 1,
|
||||
},
|
||||
})
|
||||
object_refs1 = [
|
||||
"malware--9c4638ec-f1de-4ddb-abf4-1b760417654e",
|
||||
"relationship--06520621-5352-4e6a-b976-e8fa3d437ffd",
|
||||
"indicator--a740531e-63ff-4e49-a9e1-a0a3eed0e3e7",
|
||||
]
|
||||
object_refs2 = [
|
||||
"campaign--8e2e2d2b-17d4-4cbf-938f-98ee46b3cd3f",
|
||||
"identity--311b2d2d-f010-4473-83ec-1edf84858f4c",
|
||||
"indicator--a740531e-63ff-4e49-a9e1-a0a3eed0e3e7",
|
||||
"malware--9c4638ec-f1de-4ddb-abf4-1b760417654e",
|
||||
"malware--9c4638ec-f1de-4ddb-abf4-1b760417654e",
|
||||
"relationship--06520621-5352-4e6a-b976-e8fa3d437ffd",
|
||||
"relationship--181c9c09-43e6-45dd-9374-3bec192f05ef",
|
||||
"relationship--a0cbb21c-8daf-4a7f-96aa-7155a4ef8f70",
|
||||
]
|
||||
|
||||
score = stix2.equivalence.object.list_reference_check(
|
||||
object_refs1,
|
||||
object_refs2,
|
||||
ds,
|
||||
ds2,
|
||||
**weights,
|
||||
)
|
||||
assert round(score) == 1
|
||||
|
||||
|
||||
def test_graph_equivalence_with_filesystem_source(ds):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": True,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores = {}
|
||||
fs = stix2.FileSystemSource(FS_PATH)
|
||||
env = stix2.Environment().graphically_equivalent(fs, ds, prop_scores, **weights)
|
||||
assert round(env) == 24
|
||||
assert round(prop_scores["matching_score"]) == 122
|
||||
assert round(prop_scores["sum_weights"]) == 500
|
||||
|
||||
|
||||
def test_graph_equivalence_with_duplicate_graph(ds):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores = {}
|
||||
env = stix2.Environment().graphically_equivalent(ds, ds, prop_scores, **weights)
|
||||
assert round(env) == 100
|
||||
assert round(prop_scores["matching_score"]) == 800
|
||||
assert round(prop_scores["sum_weights"]) == 800
|
||||
|
||||
|
||||
def test_graph_equivalence_with_versioning_check_on(ds2, ds):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": True,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores = {}
|
||||
env = stix2.Environment().graphically_equivalent(ds, ds2, prop_scores, **weights)
|
||||
assert round(env) == 93
|
||||
assert round(prop_scores["matching_score"]) == 745
|
||||
assert round(prop_scores["sum_weights"]) == 800
|
||||
|
||||
|
||||
def test_graph_equivalence_with_versioning_check_off(ds2, ds):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores = {}
|
||||
env = stix2.Environment().graphically_equivalent(ds, ds2, prop_scores, **weights)
|
||||
assert round(env) == 93
|
||||
assert round(prop_scores["matching_score"]) == 745
|
||||
assert round(prop_scores["sum_weights"]) == 800
|
||||
|
|
|
@ -4,7 +4,7 @@ Pattern equivalence unit tests which use STIX 2.1+-specific pattern features
|
|||
|
||||
import pytest
|
||||
|
||||
from stix2.equivalence.patterns import equivalent_patterns
|
||||
from stix2.equivalence.pattern import equivalent_patterns
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
|
|
Loading…
Reference in New Issue