expose configuration options, combine weight dictionary, update tests
parent
f9a52eeed3
commit
ff5014c606
|
@ -66,16 +66,9 @@ object_default_sem_eq_weights = json.dumps(WEIGHTS, indent=4, default=lambda o:
|
|||
object_default_sem_eq_weights = object_default_sem_eq_weights.replace('\n', '\n ')
|
||||
object_default_sem_eq_weights = object_default_sem_eq_weights.replace(' "', ' ')
|
||||
object_default_sem_eq_weights = object_default_sem_eq_weights.replace('"\n', '\n')
|
||||
with open('object_default_sem_eq_weights.rst', 'w') as f:
|
||||
with open('similarity_weights.rst', 'w') as f:
|
||||
f.write(".. code-block:: python\n\n {}\n\n".format(object_default_sem_eq_weights))
|
||||
|
||||
graph_default_sem_eq_weights = json.dumps(GRAPH_WEIGHTS, indent=4, default=lambda o: o.__name__)
|
||||
graph_default_sem_eq_weights = graph_default_sem_eq_weights.replace('\n', '\n ')
|
||||
graph_default_sem_eq_weights = graph_default_sem_eq_weights.replace(' "', ' ')
|
||||
graph_default_sem_eq_weights = graph_default_sem_eq_weights.replace('"\n', '\n')
|
||||
with open('graph_default_sem_eq_weights.rst', 'w') as f:
|
||||
f.write(".. code-block:: python\n\n {}\n\n".format(graph_default_sem_eq_weights))
|
||||
|
||||
|
||||
def get_property_type(prop):
|
||||
"""Convert property classname into pretty string name of property.
|
||||
|
|
|
@ -189,8 +189,11 @@ class Environment(DataStoreMixin):
|
|||
return None
|
||||
|
||||
@staticmethod
|
||||
def object_similarity(obj1, obj2, prop_scores={}, ignore_spec_version=False,
|
||||
versioning_checks=False, max_depth=1, **weight_dict):
|
||||
def object_similarity(
|
||||
obj1, obj2, prop_scores={}, ds1=None, ds2=None,
|
||||
ignore_spec_version=False, versioning_checks=False,
|
||||
max_depth=1, **weight_dict
|
||||
):
|
||||
"""This method returns a measure of how similar the two objects are.
|
||||
|
||||
Args:
|
||||
|
@ -198,8 +201,19 @@ class Environment(DataStoreMixin):
|
|||
obj2: A stix2 object instance
|
||||
prop_scores: A dictionary that can hold individual property scores,
|
||||
weights, contributing score, matching score and sum of weights.
|
||||
weight_dict: A dictionary that can be used to override settings
|
||||
in the similarity process
|
||||
ds1: A DataStore object instance representing your graph
|
||||
ds2: A DataStore object instance representing your graph
|
||||
ignore_spec_version: A boolean indicating whether to test object types
|
||||
that belong to different spec versions (STIX 2.0 and STIX 2.1 for example).
|
||||
If set to True this check will be skipped.
|
||||
versioning_checks: A boolean indicating whether to test multiple revisions
|
||||
of the same object (when present) to maximize similarity against a
|
||||
particular version. If set to True the algorithm will perform this step.
|
||||
max_depth: A positive integer indicating the maximum recursion depth the
|
||||
algorithm can reach when de-referencing objects and performing the
|
||||
object_similarity algorithm.
|
||||
weight_dict: A dictionary that can be used to override what checks are done
|
||||
to objects in the similarity process.
|
||||
|
||||
Returns:
|
||||
float: A number between 0.0 and 100.0 as a measurement of similarity.
|
||||
|
@ -221,12 +235,17 @@ class Environment(DataStoreMixin):
|
|||
see `the Committee Note <link here>`__.
|
||||
|
||||
"""
|
||||
return object_similarity(obj1, obj2, prop_scores, ignore_spec_version,
|
||||
versioning_checks, max_depth, **weight_dict)
|
||||
return object_similarity(
|
||||
obj1, obj2, prop_scores, ds1, ds2, ignore_spec_version,
|
||||
versioning_checks, max_depth, **weight_dict
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def object_equivalence(obj1, obj2, prop_scores={}, threshold=70, ignore_spec_version=False,
|
||||
versioning_checks=False, max_depth=1, **weight_dict):
|
||||
def object_equivalence(
|
||||
obj1, obj2, prop_scores={}, threshold=70, ds1=None, ds2=None,
|
||||
ignore_spec_version=False, versioning_checks=False,
|
||||
max_depth=1, **weight_dict
|
||||
):
|
||||
"""This method returns a true/false value if two objects are semantically equivalent.
|
||||
Internally, it calls the object_similarity function and compares it against the given
|
||||
threshold value.
|
||||
|
@ -239,8 +258,19 @@ class Environment(DataStoreMixin):
|
|||
threshold: A numerical value between 0 and 100 to determine the minimum
|
||||
score to result in successfully calling both objects equivalent. This
|
||||
value can be tuned.
|
||||
weight_dict: A dictionary that can be used to override settings
|
||||
in the similarity process
|
||||
ds1: A DataStore object instance representing your graph
|
||||
ds2: A DataStore object instance representing your graph
|
||||
ignore_spec_version: A boolean indicating whether to test object types
|
||||
that belong to different spec versions (STIX 2.0 and STIX 2.1 for example).
|
||||
If set to True this check will be skipped.
|
||||
versioning_checks: A boolean indicating whether to test multiple revisions
|
||||
of the same object (when present) to maximize similarity against a
|
||||
particular version. If set to True the algorithm will perform this step.
|
||||
max_depth: A positive integer indicating the maximum recursion depth the
|
||||
algorithm can reach when de-referencing objects and performing the
|
||||
object_similarity algorithm.
|
||||
weight_dict: A dictionary that can be used to override what checks are done
|
||||
to objects in the similarity process.
|
||||
|
||||
Returns:
|
||||
bool: True if the result of the object similarity is greater than or equal to
|
||||
|
@ -263,11 +293,16 @@ class Environment(DataStoreMixin):
|
|||
see `the Committee Note <link here>`__.
|
||||
|
||||
"""
|
||||
return object_equivalence(obj1, obj2, prop_scores, threshold, **weight_dict)
|
||||
return object_equivalence(
|
||||
obj1, obj2, prop_scores, threshold, ds1, ds2,
|
||||
ignore_spec_version, versioning_checks, max_depth, **weight_dict
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def graph_similarity(ds1, ds2, prop_scores={}, ignore_spec_version=False,
|
||||
versioning_checks=False, max_depth=1, **weight_dict):
|
||||
def graph_similarity(
|
||||
ds1, ds2, prop_scores={}, ignore_spec_version=False,
|
||||
versioning_checks=False, max_depth=1, **weight_dict
|
||||
):
|
||||
"""This method returns a similarity score for two given graphs.
|
||||
Each DataStore can contain a connected or disconnected graph and the
|
||||
final result is weighted over the amount of objects we managed to compare.
|
||||
|
@ -279,8 +314,17 @@ class Environment(DataStoreMixin):
|
|||
ds2: A DataStore object instance representing your graph
|
||||
prop_scores: A dictionary that can hold individual property scores,
|
||||
weights, contributing score, matching score and sum of weights.
|
||||
weight_dict: A dictionary that can be used to override settings
|
||||
in the similarity process
|
||||
ignore_spec_version: A boolean indicating whether to test object types
|
||||
that belong to different spec versions (STIX 2.0 and STIX 2.1 for example).
|
||||
If set to True this check will be skipped.
|
||||
versioning_checks: A boolean indicating whether to test multiple revisions
|
||||
of the same object (when present) to maximize similarity against a
|
||||
particular version. If set to True the algorithm will perform this step.
|
||||
max_depth: A positive integer indicating the maximum recursion depth the
|
||||
algorithm can reach when de-referencing objects and performing the
|
||||
object_similarity algorithm.
|
||||
weight_dict: A dictionary that can be used to override what checks are done
|
||||
to objects in the similarity process.
|
||||
|
||||
Returns:
|
||||
float: A number between 0.0 and 100.0 as a measurement of similarity.
|
||||
|
@ -295,19 +339,24 @@ class Environment(DataStoreMixin):
|
|||
Note:
|
||||
Default weight_dict:
|
||||
|
||||
.. include:: ../graph_default_sem_eq_weights.rst
|
||||
.. include:: ../similarity_weights.rst
|
||||
|
||||
Note:
|
||||
This implementation follows the Semantic Equivalence Committee Note.
|
||||
see `the Committee Note <link here>`__.
|
||||
|
||||
"""
|
||||
return graph_similarity(ds1, ds2, prop_scores, ignore_spec_version,
|
||||
versioning_checks, max_depth, **weight_dict)
|
||||
return graph_similarity(
|
||||
ds1, ds2, prop_scores, ignore_spec_version,
|
||||
versioning_checks, max_depth, **weight_dict
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def graph_equivalence(ds1, ds2, prop_scores={}, threshold=70, ignore_spec_version=False,
|
||||
versioning_checks=False, max_depth=1, **weight_dict):
|
||||
def graph_equivalence(
|
||||
ds1, ds2, prop_scores={}, threshold=70,
|
||||
ignore_spec_version=False, versioning_checks=False,
|
||||
max_depth=1, **weight_dict
|
||||
):
|
||||
"""This method returns a true/false value if two graphs are semantically equivalent.
|
||||
Internally, it calls the graph_similarity function and compares it against the given
|
||||
threshold value.
|
||||
|
@ -320,8 +369,17 @@ class Environment(DataStoreMixin):
|
|||
threshold: A numerical value between 0 and 100 to determine the minimum
|
||||
score to result in successfully calling both graphs equivalent. This
|
||||
value can be tuned.
|
||||
weight_dict: A dictionary that can be used to override settings
|
||||
in the similarity process
|
||||
ignore_spec_version: A boolean indicating whether to test object types
|
||||
that belong to different spec versions (STIX 2.0 and STIX 2.1 for example).
|
||||
If set to True this check will be skipped.
|
||||
versioning_checks: A boolean indicating whether to test multiple revisions
|
||||
of the same object (when present) to maximize similarity against a
|
||||
particular version. If set to True the algorithm will perform this step.
|
||||
max_depth: A positive integer indicating the maximum recursion depth the
|
||||
algorithm can reach when de-referencing objects and performing the
|
||||
object_similarity algorithm.
|
||||
weight_dict: A dictionary that can be used to override what checks are done
|
||||
to objects in the similarity process.
|
||||
|
||||
Returns:
|
||||
bool: True if the result of the graph similarity is greater than or equal to
|
||||
|
@ -337,11 +395,14 @@ class Environment(DataStoreMixin):
|
|||
Note:
|
||||
Default weight_dict:
|
||||
|
||||
.. include:: ../graph_default_sem_eq_weights.rst
|
||||
.. include:: ../similarity_weights.rst
|
||||
|
||||
Note:
|
||||
This implementation follows the Semantic Equivalence Committee Note.
|
||||
see `the Committee Note <link here>`__.
|
||||
|
||||
"""
|
||||
return graph_equivalence(ds1, ds2, prop_scores, threshold, **weight_dict)
|
||||
return graph_equivalence(
|
||||
ds1, ds2, prop_scores, threshold, ignore_spec_version,
|
||||
versioning_checks, max_depth, **weight_dict
|
||||
)
|
||||
|
|
|
@ -10,7 +10,11 @@ from ..object import (
|
|||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def graph_equivalence(ds1, ds2, prop_scores={}, threshold=70, **weight_dict):
|
||||
def graph_equivalence(
|
||||
ds1, ds2, prop_scores={}, threshold=70,
|
||||
ignore_spec_version=False, versioning_checks=False,
|
||||
max_depth=1, **weight_dict
|
||||
):
|
||||
"""This method returns a true/false value if two graphs are semantically equivalent.
|
||||
Internally, it calls the graph_similarity function and compares it against the given
|
||||
threshold value.
|
||||
|
@ -23,8 +27,17 @@ def graph_equivalence(ds1, ds2, prop_scores={}, threshold=70, **weight_dict):
|
|||
threshold: A numerical value between 0 and 100 to determine the minimum
|
||||
score to result in successfully calling both graphs equivalent. This
|
||||
value can be tuned.
|
||||
weight_dict: A dictionary that can be used to override settings
|
||||
in the similarity process
|
||||
ignore_spec_version: A boolean indicating whether to test object types
|
||||
that belong to different spec versions (STIX 2.0 and STIX 2.1 for example).
|
||||
If set to True this check will be skipped.
|
||||
versioning_checks: A boolean indicating whether to test multiple revisions
|
||||
of the same object (when present) to maximize similarity against a
|
||||
particular version. If set to True the algorithm will perform this step.
|
||||
max_depth: A positive integer indicating the maximum recursion depth the
|
||||
algorithm can reach when de-referencing objects and performing the
|
||||
object_similarity algorithm.
|
||||
weight_dict: A dictionary that can be used to override what checks are done
|
||||
to objects in the similarity process.
|
||||
|
||||
Returns:
|
||||
bool: True if the result of the graph similarity is greater than or equal to
|
||||
|
@ -40,21 +53,26 @@ def graph_equivalence(ds1, ds2, prop_scores={}, threshold=70, **weight_dict):
|
|||
Note:
|
||||
Default weight_dict:
|
||||
|
||||
.. include:: ../../graph_default_sem_eq_weights.rst
|
||||
.. include:: ../../similarity_weights.rst
|
||||
|
||||
Note:
|
||||
This implementation follows the Semantic Equivalence Committee Note.
|
||||
see `the Committee Note <link here>`__.
|
||||
|
||||
"""
|
||||
similarity_result = graph_similarity(ds1, ds2, prop_scores, **weight_dict)
|
||||
similarity_result = graph_similarity(
|
||||
ds1, ds2, prop_scores, ignore_spec_version,
|
||||
versioning_checks, max_depth, **weight_dict
|
||||
)
|
||||
if similarity_result >= threshold:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def graph_similarity(ds1, ds2, prop_scores={}, ignore_spec_version=False,
|
||||
versioning_checks=False, max_depth=1, **weight_dict):
|
||||
def graph_similarity(
|
||||
ds1, ds2, prop_scores={}, ignore_spec_version=False,
|
||||
versioning_checks=False, max_depth=1, **weight_dict
|
||||
):
|
||||
"""This method returns a similarity score for two given graphs.
|
||||
Each DataStore can contain a connected or disconnected graph and the
|
||||
final result is weighted over the amount of objects we managed to compare.
|
||||
|
@ -66,11 +84,17 @@ def graph_similarity(ds1, ds2, prop_scores={}, ignore_spec_version=False,
|
|||
ds2: A DataStore object instance representing your graph
|
||||
prop_scores: A dictionary that can hold individual property scores,
|
||||
weights, contributing score, matching score and sum of weights.
|
||||
ignore_spec_version: As
|
||||
versioning_checks: As
|
||||
max_depth: As
|
||||
weight_dict: A dictionary that can be used to override settings
|
||||
in the similarity process
|
||||
ignore_spec_version: A boolean indicating whether to test object types
|
||||
that belong to different spec versions (STIX 2.0 and STIX 2.1 for example).
|
||||
If set to True this check will be skipped.
|
||||
versioning_checks: A boolean indicating whether to test multiple revisions
|
||||
of the same object (when present) to maximize similarity against a
|
||||
particular version. If set to True the algorithm will perform this step.
|
||||
max_depth: A positive integer indicating the maximum recursion depth the
|
||||
algorithm can reach when de-referencing objects and performing the
|
||||
object_similarity algorithm.
|
||||
weight_dict: A dictionary that can be used to override what checks are done
|
||||
to objects in the similarity process.
|
||||
|
||||
Returns:
|
||||
float: A number between 0.0 and 100.0 as a measurement of similarity.
|
||||
|
@ -85,7 +109,7 @@ def graph_similarity(ds1, ds2, prop_scores={}, ignore_spec_version=False,
|
|||
Note:
|
||||
Default weight_dict:
|
||||
|
||||
.. include:: ../../graph_default_sem_eq_weights.rst
|
||||
.. include:: ../../similarity_weights.rst
|
||||
|
||||
Note:
|
||||
This implementation follows the Semantic Equivalence Committee Note.
|
||||
|
@ -107,7 +131,7 @@ def graph_similarity(ds1, ds2, prop_scores={}, ignore_spec_version=False,
|
|||
"max_depth": max_depth,
|
||||
}
|
||||
|
||||
if weights["_internal"]["max_depth"] <= 0:
|
||||
if max_depth <= 0:
|
||||
raise ValueError("'max_depth' must be greater than 0")
|
||||
|
||||
pairs = _object_pairs(
|
||||
|
@ -122,9 +146,11 @@ def graph_similarity(ds1, ds2, prop_scores={}, ignore_spec_version=False,
|
|||
object1_id = object1["id"]
|
||||
object2_id = object2["id"]
|
||||
|
||||
result = object_similarity(object1, object2, iprop_score, ds1, ds2,
|
||||
ignore_spec_version, versioning_checks,
|
||||
max_depth, **weights)
|
||||
result = object_similarity(
|
||||
object1, object2, iprop_score, ds1, ds2,
|
||||
ignore_spec_version, versioning_checks,
|
||||
max_depth, **weights
|
||||
)
|
||||
|
||||
if object1_id not in results:
|
||||
results[object1_id] = {"lhs": object1_id, "rhs": object2_id, "prop_score": iprop_score, "value": result}
|
||||
|
|
|
@ -4,14 +4,18 @@ import itertools
|
|||
import logging
|
||||
import time
|
||||
|
||||
from ...datastore import Filter, DataStoreMixin, DataSink, DataSource
|
||||
from ...datastore import DataSink, DataSource, DataStoreMixin, Filter
|
||||
from ...utils import STIXdatetime, parse_into_datetime
|
||||
from ..pattern import equivalent_patterns
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def object_equivalence(obj1, obj2, prop_scores={}, threshold=70, **weight_dict):
|
||||
def object_equivalence(
|
||||
obj1, obj2, prop_scores={}, threshold=70, ds1=None,
|
||||
ds2=None, ignore_spec_version=False,
|
||||
versioning_checks=False, max_depth=1, **weight_dict
|
||||
):
|
||||
"""This method returns a true/false value if two objects are semantically equivalent.
|
||||
Internally, it calls the object_similarity function and compares it against the given
|
||||
threshold value.
|
||||
|
@ -24,8 +28,19 @@ def object_equivalence(obj1, obj2, prop_scores={}, threshold=70, **weight_dict):
|
|||
threshold: A numerical value between 0 and 100 to determine the minimum
|
||||
score to result in successfully calling both objects equivalent. This
|
||||
value can be tuned.
|
||||
weight_dict: A dictionary that can be used to override settings
|
||||
in the similarity process
|
||||
ds1: A DataStore object instance representing your graph
|
||||
ds2: A DataStore object instance representing your graph
|
||||
ignore_spec_version: A boolean indicating whether to test object types
|
||||
that belong to different spec versions (STIX 2.0 and STIX 2.1 for example).
|
||||
If set to True this check will be skipped.
|
||||
versioning_checks: A boolean indicating whether to test multiple revisions
|
||||
of the same object (when present) to maximize similarity against a
|
||||
particular version. If set to True the algorithm will perform this step.
|
||||
max_depth: A positive integer indicating the maximum recursion depth the
|
||||
algorithm can reach when de-referencing objects and performing the
|
||||
object_similarity algorithm.
|
||||
weight_dict: A dictionary that can be used to override what checks are done
|
||||
to objects in the similarity process.
|
||||
|
||||
Returns:
|
||||
bool: True if the result of the object similarity is greater than or equal to
|
||||
|
@ -41,22 +56,27 @@ def object_equivalence(obj1, obj2, prop_scores={}, threshold=70, **weight_dict):
|
|||
Note:
|
||||
Default weight_dict:
|
||||
|
||||
.. include:: ../../object_default_sem_eq_weights.rst
|
||||
.. include:: ../../similarity_weights.rst
|
||||
|
||||
Note:
|
||||
This implementation follows the Semantic Equivalence Committee Note.
|
||||
see `the Committee Note <link here>`__.
|
||||
|
||||
"""
|
||||
similarity_result = object_similarity(obj1, obj2, prop_scores, **weight_dict)
|
||||
similarity_result = object_similarity(
|
||||
obj1, obj2, prop_scores, ds1, ds2, ignore_spec_version,
|
||||
versioning_checks, max_depth, **weight_dict
|
||||
)
|
||||
if similarity_result >= threshold:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def object_similarity(obj1, obj2, prop_scores={}, ds1=None, ds2=None,
|
||||
ignore_spec_version=False, versioning_checks=False,
|
||||
max_depth=1, **weight_dict):
|
||||
def object_similarity(
|
||||
obj1, obj2, prop_scores={}, ds1=None, ds2=None,
|
||||
ignore_spec_version=False, versioning_checks=False,
|
||||
max_depth=1, **weight_dict
|
||||
):
|
||||
"""This method returns a measure of similarity depending on how
|
||||
similar the two objects are.
|
||||
|
||||
|
@ -65,13 +85,19 @@ def object_similarity(obj1, obj2, prop_scores={}, ds1=None, ds2=None,
|
|||
obj2: A stix2 object instance
|
||||
prop_scores: A dictionary that can hold individual property scores,
|
||||
weights, contributing score, matching score and sum of weights.
|
||||
ds1: As
|
||||
ds2: As
|
||||
ignore_spec_version: As
|
||||
versioning_checks: As
|
||||
max_depth: As
|
||||
weight_dict: A dictionary that can be used to override settings
|
||||
in the similarity process
|
||||
ds1: A DataStore object instance representing your graph
|
||||
ds2: A DataStore object instance representing your graph
|
||||
ignore_spec_version: A boolean indicating whether to test object types
|
||||
that belong to different spec versions (STIX 2.0 and STIX 2.1 for example).
|
||||
If set to True this check will be skipped.
|
||||
versioning_checks: A boolean indicating whether to test multiple revisions
|
||||
of the same object (when present) to maximize similarity against a
|
||||
particular version. If set to True the algorithm will perform this step.
|
||||
max_depth: A positive integer indicating the maximum recursion depth the
|
||||
algorithm can reach when de-referencing objects and performing the
|
||||
object_similarity algorithm.
|
||||
weight_dict: A dictionary that can be used to override what checks are done
|
||||
to objects in the similarity process.
|
||||
|
||||
Returns:
|
||||
float: A number between 0.0 and 100.0 as a measurement of similarity.
|
||||
|
@ -86,7 +112,7 @@ def object_similarity(obj1, obj2, prop_scores={}, ds1=None, ds2=None,
|
|||
Note:
|
||||
Default weight_dict:
|
||||
|
||||
.. include:: ../../object_default_sem_eq_weights.rst
|
||||
.. include:: ../../similarity_weights.rst
|
||||
|
||||
Note:
|
||||
This implementation follows the Semantic Equivalence Committee Note.
|
||||
|
@ -107,7 +133,6 @@ def object_similarity(obj1, obj2, prop_scores={}, ds1=None, ds2=None,
|
|||
}
|
||||
|
||||
type1, type2 = obj1["type"], obj2["type"]
|
||||
ignore_spec_version = weights["_internal"]["ignore_spec_version"]
|
||||
|
||||
if type1 != type2:
|
||||
raise ValueError('The objects to compare must be of the same type!')
|
||||
|
@ -140,9 +165,8 @@ def object_similarity(obj1, obj2, prop_scores={}, ds1=None, ds2=None,
|
|||
threshold = weights[type1]["threshold"]
|
||||
contributing_score = w * comp_funct(obj1["latitude"], obj1["longitude"], obj2["latitude"], obj2["longitude"], threshold)
|
||||
elif comp_funct == reference_check or comp_funct == list_reference_check:
|
||||
max_depth_i = weights["_internal"]["max_depth"]
|
||||
if max_depth_i > 0:
|
||||
weights["_internal"]["max_depth"] = max_depth_i - 1
|
||||
if max_depth > 0:
|
||||
weights["_internal"]["max_depth"] = max_depth - 1
|
||||
ds1, ds2 = weights["_internal"]["ds1"], weights["_internal"]["ds2"]
|
||||
if _datastore_check(ds1, ds2):
|
||||
contributing_score = w * comp_funct(obj1[prop], obj2[prop], ds1, ds2, **weights)
|
||||
|
@ -155,7 +179,7 @@ def object_similarity(obj1, obj2, prop_scores={}, ds1=None, ds2=None,
|
|||
prop_scores[prop]["method"] = comp_funct.__name__
|
||||
else:
|
||||
continue # prevent excessive recursion
|
||||
weights["_internal"]["max_depth"] = max_depth_i
|
||||
weights["_internal"]["max_depth"] = max_depth
|
||||
else:
|
||||
contributing_score = w * comp_funct(obj1[prop], obj2[prop])
|
||||
|
||||
|
@ -187,7 +211,7 @@ def object_similarity(obj1, obj2, prop_scores={}, ds1=None, ds2=None,
|
|||
def check_property_present(prop, obj1, obj2):
|
||||
"""Helper method checks if a property is present on both objects."""
|
||||
if prop == "longitude_latitude":
|
||||
if all(x in obj1 and x in obj2 for x in ['latitude', 'longitude']):
|
||||
if all(x in obj1 and x in obj2 for x in ('latitude', 'longitude')):
|
||||
return True
|
||||
elif prop in obj1 and prop in obj2:
|
||||
return True
|
||||
|
@ -286,12 +310,12 @@ def custom_pattern_based(pattern1, pattern2):
|
|||
return equivalent_patterns(pattern1, pattern2)
|
||||
|
||||
|
||||
def partial_external_reference_based(refs1, refs2):
|
||||
def partial_external_reference_based(ext_refs1, ext_refs2):
|
||||
"""Performs a matching on External References.
|
||||
|
||||
Args:
|
||||
refs1: A list of external references.
|
||||
refs2: A list of external references.
|
||||
ext_refs1: A list of external references.
|
||||
ext_refs2: A list of external references.
|
||||
|
||||
Returns:
|
||||
float: Number between 0.0 and 1.0 depending on matches.
|
||||
|
@ -300,44 +324,47 @@ def partial_external_reference_based(refs1, refs2):
|
|||
allowed = {"veris", "cve", "capec", "mitre-attack"}
|
||||
matches = 0
|
||||
|
||||
for ext_ref1 in refs1:
|
||||
for ext_ref2 in refs2:
|
||||
sn_match = False
|
||||
ei_match = False
|
||||
url_match = False
|
||||
source_name = None
|
||||
ref_pairs = itertools.chain(
|
||||
itertools.product(ext_refs1, ext_refs2),
|
||||
)
|
||||
|
||||
if check_property_present("source_name", ext_ref1, ext_ref2):
|
||||
if ext_ref1["source_name"] == ext_ref2["source_name"]:
|
||||
source_name = ext_ref1["source_name"]
|
||||
sn_match = True
|
||||
if check_property_present("external_id", ext_ref1, ext_ref2):
|
||||
if ext_ref1["external_id"] == ext_ref2["external_id"]:
|
||||
ei_match = True
|
||||
if check_property_present("url", ext_ref1, ext_ref2):
|
||||
if ext_ref1["url"] == ext_ref2["url"]:
|
||||
url_match = True
|
||||
for ext_ref1, ext_ref2 in ref_pairs:
|
||||
sn_match = False
|
||||
ei_match = False
|
||||
url_match = False
|
||||
source_name = None
|
||||
|
||||
# Special case: if source_name is a STIX defined name and either
|
||||
# external_id or url match then its a perfect match and other entries
|
||||
# can be ignored.
|
||||
if sn_match and (ei_match or url_match) and source_name in allowed:
|
||||
result = 1.0
|
||||
logger.debug(
|
||||
"--\t\tpartial_external_reference_based '%s' '%s'\tresult: '%s'",
|
||||
refs1, refs2, result,
|
||||
)
|
||||
return result
|
||||
if check_property_present("source_name", ext_ref1, ext_ref2):
|
||||
if ext_ref1["source_name"] == ext_ref2["source_name"]:
|
||||
source_name = ext_ref1["source_name"]
|
||||
sn_match = True
|
||||
if check_property_present("external_id", ext_ref1, ext_ref2):
|
||||
if ext_ref1["external_id"] == ext_ref2["external_id"]:
|
||||
ei_match = True
|
||||
if check_property_present("url", ext_ref1, ext_ref2):
|
||||
if ext_ref1["url"] == ext_ref2["url"]:
|
||||
url_match = True
|
||||
|
||||
# Regular check. If the source_name (not STIX-defined) or external_id or
|
||||
# url matches then we consider the entry a match.
|
||||
if (sn_match or ei_match or url_match) and source_name not in allowed:
|
||||
matches += 1
|
||||
# Special case: if source_name is a STIX defined name and either
|
||||
# external_id or url match then its a perfect match and other entries
|
||||
# can be ignored.
|
||||
if sn_match and (ei_match or url_match) and source_name in allowed:
|
||||
result = 1.0
|
||||
logger.debug(
|
||||
"--\t\tpartial_external_reference_based '%s' '%s'\tresult: '%s'",
|
||||
ext_refs1, ext_refs2, result,
|
||||
)
|
||||
return result
|
||||
|
||||
result = matches / max(len(refs1), len(refs2))
|
||||
# Regular check. If the source_name (not STIX-defined) or external_id or
|
||||
# url matches then we consider the entry a match.
|
||||
if (sn_match or ei_match or url_match) and source_name not in allowed:
|
||||
matches += 1
|
||||
|
||||
result = matches / max(len(ext_refs1), len(ext_refs2))
|
||||
logger.debug(
|
||||
"--\t\tpartial_external_reference_based '%s' '%s'\tresult: '%s'",
|
||||
refs1, refs2, result,
|
||||
ext_refs1, ext_refs2, result,
|
||||
)
|
||||
return result
|
||||
|
||||
|
@ -381,10 +408,11 @@ def _versioned_checks(ref1, ref2, ds1, ds2, **weights):
|
|||
max_depth = weights["_internal"]["max_depth"]
|
||||
|
||||
for object1, object2 in pairs:
|
||||
result = object_similarity(object1, object2, ds1=ds1, ds2=ds2,
|
||||
ignore_spec_version=ignore_spec_version,
|
||||
versioning_checks=versioning_checks,
|
||||
max_depth=max_depth, **weights)
|
||||
result = object_similarity(
|
||||
object1, object2, ds1, ds2,
|
||||
ignore_spec_version, versioning_checks,
|
||||
max_depth, **weights
|
||||
)
|
||||
if ref1 not in results:
|
||||
results[ref1] = {"matched": ref2, "value": result}
|
||||
elif result > results[ref1]["value"]:
|
||||
|
@ -413,10 +441,11 @@ def reference_check(ref1, ref2, ds1, ds2, **weights):
|
|||
else:
|
||||
o1, o2 = ds1.get(ref1), ds2.get(ref2)
|
||||
if o1 and o2:
|
||||
result = object_similarity(o1, o2, ds1=ds1, ds2=ds2,
|
||||
ignore_spec_version=ignore_spec_version,
|
||||
versioning_checks=versioning_checks,
|
||||
max_depth=max_depth, **weights) / 100.0
|
||||
result = object_similarity(
|
||||
o1, o2, ds1, ds2,
|
||||
ignore_spec_version, versioning_checks,
|
||||
max_depth, **weights
|
||||
) / 100.0
|
||||
|
||||
logger.debug(
|
||||
"--\t\treference_check '%s' '%s'\tresult: '%s'",
|
||||
|
@ -468,8 +497,10 @@ def list_reference_check(refs1, refs2, ds1, ds2, **weights):
|
|||
|
||||
|
||||
def _datastore_check(ds1, ds2):
|
||||
if (issubclass(ds1.__class__, (DataStoreMixin, DataSink, DataSource)) or
|
||||
issubclass(ds2.__class__, (DataStoreMixin, DataSink, DataSource))):
|
||||
if (
|
||||
issubclass(ds1.__class__, (DataStoreMixin, DataSink, DataSource)) or
|
||||
issubclass(ds2.__class__, (DataStoreMixin, DataSink, DataSource))
|
||||
):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
@ -586,5 +617,5 @@ WEIGHTS = {
|
|||
"vulnerability": {
|
||||
"name": (30, partial_string_based),
|
||||
"external_references": (70, partial_external_reference_based),
|
||||
}
|
||||
},
|
||||
} # :autodoc-skip:
|
||||
|
|
|
@ -424,7 +424,7 @@ def test_related_to_by_target(ds):
|
|||
|
||||
|
||||
def test_versioned_checks(ds, ds2):
|
||||
weights = stix2.equivalence.graph.GRAPH_WEIGHTS.copy()
|
||||
weights = stix2.equivalence.graph.WEIGHTS.copy()
|
||||
weights.update({
|
||||
"_internal": {
|
||||
"ignore_spec_version": True,
|
||||
|
@ -437,7 +437,7 @@ def test_versioned_checks(ds, ds2):
|
|||
|
||||
|
||||
def test_semantic_check_with_versioning(ds, ds2):
|
||||
weights = stix2.equivalence.graph.GRAPH_WEIGHTS.copy()
|
||||
weights = stix2.equivalence.graph.WEIGHTS.copy()
|
||||
weights.update({
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
|
@ -467,13 +467,11 @@ def test_semantic_check_with_versioning(ds, ds2):
|
|||
|
||||
|
||||
def test_list_semantic_check(ds, ds2):
|
||||
weights = stix2.equivalence.graph.GRAPH_WEIGHTS.copy()
|
||||
weights = stix2.equivalence.graph.WEIGHTS.copy()
|
||||
weights.update({
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": False,
|
||||
"ds1": ds,
|
||||
"ds2": ds2,
|
||||
"max_depth": 1,
|
||||
},
|
||||
})
|
||||
|
@ -504,39 +502,18 @@ def test_list_semantic_check(ds, ds2):
|
|||
|
||||
|
||||
def test_graph_similarity_raises_value_error(ds):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": False,
|
||||
"max_depth": -1,
|
||||
},
|
||||
}
|
||||
with pytest.raises(ValueError):
|
||||
prop_scores1 = {}
|
||||
stix2.Environment().graph_similarity(ds, ds2, prop_scores1, **weights)
|
||||
stix2.Environment().graph_similarity(ds, ds2, prop_scores1, max_depth=-1)
|
||||
|
||||
|
||||
def test_graph_similarity_with_filesystem_source(ds, fs):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": True,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores1 = {}
|
||||
env1 = stix2.Environment().graph_similarity(fs, ds, prop_scores1, **weights)
|
||||
env1 = stix2.Environment().graph_similarity(fs, ds, prop_scores1, ignore_spec_version=True)
|
||||
|
||||
# Switching parameters
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": True,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores2 = {}
|
||||
env2 = stix2.Environment().graph_similarity(ds, fs, prop_scores2, **weights)
|
||||
env2 = stix2.Environment().graph_similarity(ds, fs, prop_scores2, ignore_spec_version=True)
|
||||
|
||||
assert round(env1) == 25
|
||||
assert round(prop_scores1["matching_score"]) == 451
|
||||
|
@ -552,41 +529,20 @@ def test_graph_similarity_with_filesystem_source(ds, fs):
|
|||
|
||||
|
||||
def test_graph_similarity_with_duplicate_graph(ds):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores = {}
|
||||
env = stix2.Environment().graph_similarity(ds, ds, prop_scores, **weights)
|
||||
env = stix2.Environment().graph_similarity(ds, ds, prop_scores)
|
||||
assert round(env) == 100
|
||||
assert round(prop_scores["matching_score"]) == 800
|
||||
assert round(prop_scores["len_pairs"]) == 8
|
||||
|
||||
|
||||
def test_graph_similarity_with_versioning_check_on(ds2, ds):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": True,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores1 = {}
|
||||
env1 = stix2.Environment().graph_similarity(ds, ds2, prop_scores1, **weights)
|
||||
env1 = stix2.Environment().graph_similarity(ds, ds2, prop_scores1, versioning_checks=True)
|
||||
|
||||
# Switching parameters
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": True,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores2 = {}
|
||||
env2 = stix2.Environment().graph_similarity(ds2, ds, prop_scores2, **weights)
|
||||
env2 = stix2.Environment().graph_similarity(ds2, ds, prop_scores2, versioning_checks=True)
|
||||
|
||||
assert round(env1) == 88
|
||||
assert round(prop_scores1["matching_score"]) == 789
|
||||
|
@ -602,26 +558,12 @@ def test_graph_similarity_with_versioning_check_on(ds2, ds):
|
|||
|
||||
|
||||
def test_graph_similarity_with_versioning_check_off(ds2, ds):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores1 = {}
|
||||
env1 = stix2.Environment().graph_similarity(ds, ds2, prop_scores1, **weights)
|
||||
env1 = stix2.Environment().graph_similarity(ds, ds2, prop_scores1)
|
||||
|
||||
# Switching parameters
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores2 = {}
|
||||
env2 = stix2.Environment().graph_similarity(ds2, ds, prop_scores2, **weights)
|
||||
env2 = stix2.Environment().graph_similarity(ds2, ds, prop_scores2)
|
||||
|
||||
assert round(env1) == 88
|
||||
assert round(prop_scores1["matching_score"]) == 789
|
||||
|
@ -637,26 +579,12 @@ def test_graph_similarity_with_versioning_check_off(ds2, ds):
|
|||
|
||||
|
||||
def test_graph_equivalence_with_filesystem_source(ds, fs):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": True,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores1 = {}
|
||||
env1 = stix2.Environment().graph_equivalence(fs, ds, prop_scores1, **weights)
|
||||
env1 = stix2.Environment().graph_equivalence(fs, ds, prop_scores1, ignore_spec_version=True)
|
||||
|
||||
# Switching parameters
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": True,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores2 = {}
|
||||
env2 = stix2.Environment().graph_equivalence(ds, fs, prop_scores2, **weights)
|
||||
env2 = stix2.Environment().graph_equivalence(ds, fs, prop_scores2, ignore_spec_version=True)
|
||||
|
||||
assert env1 is False
|
||||
assert round(prop_scores1["matching_score"]) == 451
|
||||
|
@ -672,41 +600,20 @@ def test_graph_equivalence_with_filesystem_source(ds, fs):
|
|||
|
||||
|
||||
def test_graph_equivalence_with_duplicate_graph(ds):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores = {}
|
||||
env = stix2.Environment().graph_equivalence(ds, ds, prop_scores, **weights)
|
||||
env = stix2.Environment().graph_equivalence(ds, ds, prop_scores)
|
||||
assert env is True
|
||||
assert round(prop_scores["matching_score"]) == 800
|
||||
assert round(prop_scores["len_pairs"]) == 8
|
||||
|
||||
|
||||
def test_graph_equivalence_with_versioning_check_on(ds2, ds):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": True,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores1 = {}
|
||||
env1 = stix2.Environment().graph_equivalence(ds, ds2, prop_scores1, **weights)
|
||||
env1 = stix2.Environment().graph_equivalence(ds, ds2, prop_scores1, versioning_checks=True)
|
||||
|
||||
# Switching parameters
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": True,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores2 = {}
|
||||
env2 = stix2.Environment().graph_equivalence(ds2, ds, prop_scores2, **weights)
|
||||
env2 = stix2.Environment().graph_equivalence(ds2, ds, prop_scores2, versioning_checks=True)
|
||||
|
||||
assert env1 is True
|
||||
assert round(prop_scores1["matching_score"]) == 789
|
||||
|
@ -722,26 +629,12 @@ def test_graph_equivalence_with_versioning_check_on(ds2, ds):
|
|||
|
||||
|
||||
def test_graph_equivalence_with_versioning_check_off(ds2, ds):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores1 = {}
|
||||
env1 = stix2.Environment().graph_equivalence(ds, ds2, prop_scores1, **weights)
|
||||
env1 = stix2.Environment().graph_equivalence(ds, ds2, prop_scores1)
|
||||
|
||||
# Switching parameters
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores2 = {}
|
||||
env2 = stix2.Environment().graph_equivalence(ds2, ds, prop_scores2, **weights)
|
||||
env2 = stix2.Environment().graph_equivalence(ds2, ds, prop_scores2)
|
||||
|
||||
assert env1 is True
|
||||
assert round(prop_scores1["matching_score"]) == 789
|
||||
|
|
|
@ -760,16 +760,13 @@ def test_object_similarity_different_spec_version():
|
|||
"valid_from": (5, stix2.equivalence.object.partial_timestamp_based),
|
||||
"tdelta": 1, # One day interval
|
||||
},
|
||||
"_internal": {
|
||||
"ignore_spec_version": True, # Disables spec_version check.
|
||||
},
|
||||
}
|
||||
ind1 = stix2.v21.Indicator(id=INDICATOR_ID, **INDICATOR_KWARGS)
|
||||
ind2 = stix2.v20.Indicator(id=INDICATOR_ID, **IND_KWARGS)
|
||||
env = stix2.Environment().object_similarity(ind1, ind2, **weights)
|
||||
env = stix2.Environment().object_similarity(ind1, ind2, ignore_spec_version=True, **weights)
|
||||
assert round(env) == 0
|
||||
|
||||
env = stix2.Environment().object_similarity(ind2, ind1, **weights)
|
||||
env = stix2.Environment().object_similarity(ind2, ind1, ignore_spec_version=True, **weights)
|
||||
assert round(env) == 0
|
||||
|
||||
|
||||
|
@ -861,7 +858,9 @@ def test_object_similarity_exact_match():
|
|||
def test_non_existent_config_for_object():
|
||||
r1 = stix2.v21.Report(id=REPORT_ID, **REPORT_KWARGS)
|
||||
r2 = stix2.v21.Report(id=REPORT_ID, **REPORT_KWARGS)
|
||||
assert stix2.Environment().object_similarity(r1, r2) == 0.0
|
||||
prop_scores = {}
|
||||
assert stix2.Environment().object_similarity(r1, r2, prop_scores) == 100.0
|
||||
assert prop_scores["object_refs"]["method"] == "partial_list_based"
|
||||
|
||||
|
||||
def custom_semantic_equivalence_method(obj1, obj2, **weights):
|
||||
|
@ -937,7 +936,8 @@ def test_object_similarity_prop_scores_method_provided():
|
|||
|
||||
|
||||
def test_versioned_checks(ds, ds2):
|
||||
weights = stix2.equivalence.graph.GRAPH_WEIGHTS.copy()
|
||||
# Testing internal method
|
||||
weights = stix2.equivalence.graph.WEIGHTS.copy()
|
||||
weights.update({
|
||||
"_internal": {
|
||||
"ignore_spec_version": True,
|
||||
|
@ -950,7 +950,7 @@ def test_versioned_checks(ds, ds2):
|
|||
|
||||
|
||||
def test_semantic_check_with_versioning(ds, ds2):
|
||||
weights = stix2.equivalence.graph.GRAPH_WEIGHTS.copy()
|
||||
weights = stix2.equivalence.graph.WEIGHTS.copy()
|
||||
weights.update({
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
|
@ -981,7 +981,7 @@ def test_semantic_check_with_versioning(ds, ds2):
|
|||
|
||||
|
||||
def test_list_semantic_check(ds, ds2):
|
||||
weights = stix2.equivalence.graph.GRAPH_WEIGHTS.copy()
|
||||
weights = stix2.equivalence.graph.WEIGHTS.copy()
|
||||
weights.update({
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
|
@ -1027,39 +1027,28 @@ def test_list_semantic_check(ds, ds2):
|
|||
|
||||
|
||||
def test_graph_similarity_raises_value_error(ds):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": False,
|
||||
"max_depth": -1,
|
||||
},
|
||||
}
|
||||
with pytest.raises(ValueError):
|
||||
prop_scores1 = {}
|
||||
stix2.Environment().graph_similarity(ds, ds2, prop_scores1, **weights)
|
||||
stix2.Environment().graph_similarity(ds, ds2, prop_scores1, max_depth=-1)
|
||||
|
||||
|
||||
def test_graph_similarity_with_filesystem_source(ds, fs):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": True,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores1 = {}
|
||||
env1 = stix2.Environment().graph_similarity(fs, ds, prop_scores1, **weights)
|
||||
env1 = stix2.Environment().graph_similarity(
|
||||
fs, ds, prop_scores1,
|
||||
ignore_spec_version=True,
|
||||
versioning_checks=False,
|
||||
max_depth=1,
|
||||
)
|
||||
|
||||
# Switching parameters
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": True,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores2 = {}
|
||||
env2 = stix2.Environment().graph_similarity(ds, fs, prop_scores2, **weights)
|
||||
env2 = stix2.Environment().graph_similarity(
|
||||
ds, fs, prop_scores2,
|
||||
ignore_spec_version=True,
|
||||
versioning_checks=False,
|
||||
max_depth=1,
|
||||
)
|
||||
|
||||
assert round(env1) == 23
|
||||
assert round(prop_scores1["matching_score"]) == 411
|
||||
|
@ -1154,14 +1143,11 @@ def test_depth_limiting():
|
|||
"some2_ref": (33, stix2.equivalence.object.reference_check),
|
||||
"name": (34, stix2.equivalence.object.partial_string_based),
|
||||
},
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores1 = {}
|
||||
env1 = stix2.equivalence.graph.graph_similarity(mem_store1, mem_store2, prop_scores1, **custom_weights)
|
||||
env1 = stix2.equivalence.graph.graph_similarity(
|
||||
mem_store1, mem_store2, prop_scores1, **custom_weights
|
||||
)
|
||||
|
||||
assert round(env1) == 38
|
||||
assert round(prop_scores1["matching_score"]) == 300
|
||||
|
@ -1185,44 +1171,23 @@ def test_depth_limiting():
|
|||
|
||||
|
||||
def test_graph_similarity_with_duplicate_graph(ds):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores = {}
|
||||
env = stix2.Environment().graph_similarity(ds, ds, prop_scores, **weights)
|
||||
env = stix2.Environment().graph_similarity(ds, ds, prop_scores)
|
||||
assert round(env) == 100
|
||||
assert round(prop_scores["matching_score"]) == 800
|
||||
assert round(prop_scores["len_pairs"]) == 8
|
||||
|
||||
|
||||
def test_graph_similarity_with_versioning_check_on(ds2, ds):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": True,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores1 = {}
|
||||
env1 = stix2.Environment().graph_similarity(ds, ds2, prop_scores1, **weights)
|
||||
env1 = stix2.Environment().graph_similarity(ds, ds2, prop_scores1, versioning_checks=True)
|
||||
assert round(env1) == 88
|
||||
assert round(prop_scores1["matching_score"]) == 789
|
||||
assert round(prop_scores1["len_pairs"]) == 9
|
||||
|
||||
# Switching parameters
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores2 = {}
|
||||
env2 = stix2.Environment().graph_similarity(ds2, ds, prop_scores2, **weights)
|
||||
env2 = stix2.Environment().graph_similarity(ds2, ds, prop_scores2, versioning_checks=True)
|
||||
assert round(env2) == 88
|
||||
assert round(prop_scores2["matching_score"]) == 789
|
||||
assert round(prop_scores2["len_pairs"]) == 9
|
||||
|
@ -1233,29 +1198,15 @@ def test_graph_similarity_with_versioning_check_on(ds2, ds):
|
|||
|
||||
|
||||
def test_graph_similarity_with_versioning_check_off(ds2, ds):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores1 = {}
|
||||
env1 = stix2.Environment().graph_similarity(ds, ds2, prop_scores1, **weights)
|
||||
env1 = stix2.Environment().graph_similarity(ds, ds2, prop_scores1)
|
||||
assert round(env1) == 88
|
||||
assert round(prop_scores1["matching_score"]) == 789
|
||||
assert round(prop_scores1["len_pairs"]) == 9
|
||||
|
||||
# Switching parameters
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores2 = {}
|
||||
env2 = stix2.Environment().graph_similarity(ds2, ds, prop_scores2, **weights)
|
||||
env2 = stix2.Environment().graph_similarity(ds2, ds, prop_scores2)
|
||||
assert round(env2) == 88
|
||||
assert round(prop_scores2["matching_score"]) == 789
|
||||
assert round(prop_scores2["len_pairs"]) == 9
|
||||
|
@ -1266,26 +1217,12 @@ def test_graph_similarity_with_versioning_check_off(ds2, ds):
|
|||
|
||||
|
||||
def test_graph_equivalence_with_filesystem_source(ds, fs):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": True,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores1 = {}
|
||||
env1 = stix2.Environment().graph_equivalence(fs, ds, prop_scores1, **weights)
|
||||
env1 = stix2.Environment().graph_equivalence(fs, ds, prop_scores1, ignore_spec_version=True)
|
||||
|
||||
# Switching parameters
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": True,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores2 = {}
|
||||
env2 = stix2.Environment().graph_equivalence(ds, fs, prop_scores2, **weights)
|
||||
env2 = stix2.Environment().graph_equivalence(ds, fs, prop_scores2, ignore_spec_version=True)
|
||||
|
||||
assert env1 is False
|
||||
assert round(prop_scores1["matching_score"]) == 411
|
||||
|
@ -1301,41 +1238,20 @@ def test_graph_equivalence_with_filesystem_source(ds, fs):
|
|||
|
||||
|
||||
def test_graph_equivalence_with_duplicate_graph(ds):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores = {}
|
||||
env = stix2.Environment().graph_equivalence(ds, ds, prop_scores, **weights)
|
||||
env = stix2.Environment().graph_equivalence(ds, ds, prop_scores)
|
||||
assert env is True
|
||||
assert round(prop_scores["matching_score"]) == 800
|
||||
assert round(prop_scores["len_pairs"]) == 8
|
||||
|
||||
|
||||
def test_graph_equivalence_with_versioning_check_on(ds2, ds):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": True,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores1 = {}
|
||||
env1 = stix2.Environment().graph_equivalence(ds, ds2, prop_scores1, **weights)
|
||||
env1 = stix2.Environment().graph_equivalence(ds, ds2, prop_scores1, versioning_checks=True)
|
||||
|
||||
# Switching parameters
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": True,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores2 = {}
|
||||
env2 = stix2.Environment().graph_equivalence(ds2, ds, prop_scores2, **weights)
|
||||
env2 = stix2.Environment().graph_equivalence(ds2, ds, prop_scores2, versioning_checks=True)
|
||||
|
||||
assert env1 is True
|
||||
assert round(prop_scores1["matching_score"]) == 789
|
||||
|
@ -1351,26 +1267,12 @@ def test_graph_equivalence_with_versioning_check_on(ds2, ds):
|
|||
|
||||
|
||||
def test_graph_equivalence_with_versioning_check_off(ds2, ds):
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores1 = {}
|
||||
env1 = stix2.Environment().graph_equivalence(ds, ds2, prop_scores1, **weights)
|
||||
env1 = stix2.Environment().graph_equivalence(ds, ds2, prop_scores1)
|
||||
|
||||
# Switching parameters
|
||||
weights = {
|
||||
"_internal": {
|
||||
"ignore_spec_version": False,
|
||||
"versioning_checks": False,
|
||||
"max_depth": 1,
|
||||
},
|
||||
}
|
||||
prop_scores2 = {}
|
||||
env2 = stix2.Environment().graph_equivalence(ds2, ds, prop_scores2, **weights)
|
||||
env2 = stix2.Environment().graph_equivalence(ds2, ds, prop_scores2)
|
||||
|
||||
assert env1 is True
|
||||
assert round(prop_scores1["matching_score"]) == 789
|
||||
|
|
Loading…
Reference in New Issue