"""Python STIX2 Environment API.""" import copy from .datastore import CompositeDataSource, DataStoreMixin from .equivalence.graph import graph_equivalence, graph_similarity from .equivalence.object import object_equivalence, object_similarity from .parsing import parse as _parse class ObjectFactory(object): """Easily create STIX objects with default values for certain properties. Args: created_by_ref (optional): Default created_by_ref value to apply to all objects created by this factory. created (optional): Default created value to apply to all objects created by this factory. external_references (optional): Default `external_references` value to apply to all objects created by this factory. object_marking_refs (optional): Default `object_marking_refs` value to apply to all objects created by this factory. list_append (bool, optional): When a default is set for a list property like `external_references` or `object_marking_refs` and a value for that property is passed into `create()`, if this is set to True, that value will be added to the list alongside the default. If this is set to False, the passed in value will replace the default. Defaults to True. """ def __init__( self, created_by_ref=None, created=None, external_references=None, object_marking_refs=None, list_append=True, ): self._defaults = {} if created_by_ref: self.set_default_creator(created_by_ref) if created: self.set_default_created(created) if external_references: self.set_default_external_refs(external_references) if object_marking_refs: self.set_default_object_marking_refs(object_marking_refs) self._list_append = list_append self._list_properties = ['external_references', 'object_marking_refs'] def set_default_creator(self, creator=None): """Set default value for the `created_by_ref` property. """ self._defaults['created_by_ref'] = creator def set_default_created(self, created=None): """Set default value for the `created` property. """ self._defaults['created'] = created # If the user provides a default "created" time, we also want to use # that as the modified time. self._defaults['modified'] = created def set_default_external_refs(self, external_references=None): """Set default external references. """ self._defaults['external_references'] = external_references def set_default_object_marking_refs(self, object_marking_refs=None): """Set default object markings. """ self._defaults['object_marking_refs'] = object_marking_refs def create(self, cls, **kwargs): """Create a STIX object using object factory defaults. Args: cls: the python-stix2 class of the object to be created (eg. Indicator) **kwargs: The property/value pairs of the STIX object to be created """ # Use self.defaults as the base, but update with any explicit args # provided by the user. properties = copy.deepcopy(self._defaults) if kwargs: if self._list_append: # Append provided items to list properties instead of replacing them for list_prop in set(self._list_properties).intersection(kwargs.keys(), properties.keys()): kwarg_prop = kwargs.pop(list_prop) if kwarg_prop is None: del properties[list_prop] continue if not isinstance(properties[list_prop], list): properties[list_prop] = [properties[list_prop]] if isinstance(kwarg_prop, list): properties[list_prop].extend(kwarg_prop) else: properties[list_prop].append(kwarg_prop) properties.update(**kwargs) return cls(**properties) class Environment(DataStoreMixin): """Abstract away some of the nasty details of working with STIX content. Args: factory (ObjectFactory, optional): Factory for creating objects with common defaults for certain properties. store (DataStore, optional): Data store providing the source and sink for the environment. source (DataSource, optional): Source for retrieving STIX objects. sink (DataSink, optional): Destination for saving STIX objects. Invalid if `store` is also provided. .. automethod:: get .. automethod:: all_versions .. automethod:: query .. automethod:: creator_of .. automethod:: relationships .. automethod:: related_to .. automethod:: add """ def __init__(self, factory=ObjectFactory(), store=None, source=None, sink=None): self.factory = factory self.source = CompositeDataSource() if store: self.source.add_data_source(store.source) self.sink = store.sink if source: self.source.add_data_source(source) if sink: if store: raise ValueError("Data store already provided! Environment may only have one data sink.") self.sink = sink def create(self, *args, **kwargs): return self.factory.create(*args, **kwargs) create.__doc__ = ObjectFactory.create.__doc__ def set_default_creator(self, *args, **kwargs): return self.factory.set_default_creator(*args, **kwargs) set_default_creator.__doc__ = ObjectFactory.set_default_creator.__doc__ def set_default_created(self, *args, **kwargs): return self.factory.set_default_created(*args, **kwargs) set_default_created.__doc__ = ObjectFactory.set_default_created.__doc__ def set_default_external_refs(self, *args, **kwargs): return self.factory.set_default_external_refs(*args, **kwargs) set_default_external_refs.__doc__ = ObjectFactory.set_default_external_refs.__doc__ def set_default_object_marking_refs(self, *args, **kwargs): return self.factory.set_default_object_marking_refs(*args, **kwargs) set_default_object_marking_refs.__doc__ = ObjectFactory.set_default_object_marking_refs.__doc__ def add_filters(self, *args, **kwargs): return self.source.filters.add(*args, **kwargs) def add_filter(self, *args, **kwargs): return self.source.filters.add(*args, **kwargs) def parse(self, *args, **kwargs): return _parse(*args, **kwargs) parse.__doc__ = _parse.__doc__ def creator_of(self, obj): """Retrieve the Identity refered to by the object's `created_by_ref`. Args: obj: The STIX object whose `created_by_ref` property will be looked up. Returns: str: The STIX object's creator, or None, if the object contains no `created_by_ref` property or the object's creator cannot be found. """ creator_id = obj.get('created_by_ref', '') if creator_id: return self.get(creator_id) else: return None @staticmethod def object_similarity( obj1, obj2, prop_scores={}, ds1=None, ds2=None, ignore_spec_version=False, versioning_checks=False, max_depth=1, **weight_dict ): """This method returns a measure of how similar the two objects are. Args: obj1: A stix2 object instance obj2: A stix2 object instance prop_scores: A dictionary that can hold individual property scores, weights, contributing score, matching score and sum of weights. ds1 (optional): A DataStore object instance from which to pull related objects ds2 (optional): A DataStore object instance from which to pull related objects ignore_spec_version: A boolean indicating whether to test object types that belong to different spec versions (STIX 2.0 and STIX 2.1 for example). If set to True this check will be skipped. versioning_checks: A boolean indicating whether to test multiple revisions of the same object (when present) to maximize similarity against a particular version. If set to True the algorithm will perform this step. max_depth: A positive integer indicating the maximum recursion depth the algorithm can reach when de-referencing objects and performing the object_similarity algorithm. weight_dict: A dictionary that can be used to override what checks are done to objects in the similarity process. Returns: float: A number between 0.0 and 100.0 as a measurement of similarity. Warning: Object types need to have property weights defined for the similarity process. Otherwise, those objects will not influence the final score. The WEIGHTS dictionary under `stix2.equivalence.object` can give you an idea on how to add new entries and pass them via the `weight_dict` argument. Similarly, the values or methods can be fine tuned for a particular use case. Note: Default weight_dict: .. include:: ../similarity_weights.rst Note: This implementation follows the Semantic Equivalence Committee Note. see `the Committee Note `__. """ return object_similarity( obj1, obj2, prop_scores, ds1, ds2, ignore_spec_version, versioning_checks, max_depth, **weight_dict ) @staticmethod def object_equivalence( obj1, obj2, prop_scores={}, threshold=70, ds1=None, ds2=None, ignore_spec_version=False, versioning_checks=False, max_depth=1, **weight_dict ): """This method returns a true/false value if two objects are semantically equivalent. Internally, it calls the object_similarity function and compares it against the given threshold value. Args: obj1: A stix2 object instance obj2: A stix2 object instance prop_scores: A dictionary that can hold individual property scores, weights, contributing score, matching score and sum of weights. threshold: A numerical value between 0 and 100 to determine the minimum score to result in successfully calling both objects equivalent. This value can be tuned. ds1: A DataStore object instance representing your graph ds2: A DataStore object instance representing your graph ignore_spec_version: A boolean indicating whether to test object types that belong to different spec versions (STIX 2.0 and STIX 2.1 for example). If set to True this check will be skipped. versioning_checks: A boolean indicating whether to test multiple revisions of the same object (when present) to maximize similarity against a particular version. If set to True the algorithm will perform this step. max_depth: A positive integer indicating the maximum recursion depth the algorithm can reach when de-referencing objects and performing the object_similarity algorithm. weight_dict: A dictionary that can be used to override what checks are done to objects in the similarity process. Returns: bool: True if the result of the object similarity is greater than or equal to the threshold value. False otherwise. Warning: Object types need to have property weights defined for the similarity process. Otherwise, those objects will not influence the final score. The WEIGHTS dictionary under `stix2.equivalence.object` can give you an idea on how to add new entries and pass them via the `weight_dict` argument. Similarly, the values or methods can be fine tuned for a particular use case. Note: Default weight_dict: .. include:: ../similarity_weights.rst Note: This implementation follows the Semantic Equivalence Committee Note. see `the Committee Note `__. """ return object_equivalence( obj1, obj2, prop_scores, threshold, ds1, ds2, ignore_spec_version, versioning_checks, max_depth, **weight_dict ) @staticmethod def graph_similarity( ds1, ds2, prop_scores={}, ignore_spec_version=False, versioning_checks=False, max_depth=1, **weight_dict ): """This method returns a similarity score for two given graphs. Each DataStore can contain a connected or disconnected graph and the final result is weighted over the amount of objects we managed to compare. This approach builds on top of the object-based similarity process and each comparison can return a value between 0 and 100. Args: ds1: A DataStore object instance representing your graph ds2: A DataStore object instance representing your graph prop_scores: A dictionary that can hold individual property scores, weights, contributing score, matching score and sum of weights. ignore_spec_version: A boolean indicating whether to test object types that belong to different spec versions (STIX 2.0 and STIX 2.1 for example). If set to True this check will be skipped. versioning_checks: A boolean indicating whether to test multiple revisions of the same object (when present) to maximize similarity against a particular version. If set to True the algorithm will perform this step. max_depth: A positive integer indicating the maximum recursion depth the algorithm can reach when de-referencing objects and performing the object_similarity algorithm. weight_dict: A dictionary that can be used to override what checks are done to objects in the similarity process. Returns: float: A number between 0.0 and 100.0 as a measurement of similarity. Warning: Object types need to have property weights defined for the similarity process. Otherwise, those objects will not influence the final score. The WEIGHTS dictionary under `stix2.equivalence.graph` can give you an idea on how to add new entries and pass them via the `weight_dict` argument. Similarly, the values or methods can be fine tuned for a particular use case. Note: Default weight_dict: .. include:: ../similarity_weights.rst Note: This implementation follows the Semantic Equivalence Committee Note. see `the Committee Note `__. """ return graph_similarity( ds1, ds2, prop_scores, ignore_spec_version, versioning_checks, max_depth, **weight_dict ) @staticmethod def graph_equivalence( ds1, ds2, prop_scores={}, threshold=70, ignore_spec_version=False, versioning_checks=False, max_depth=1, **weight_dict ): """This method returns a true/false value if two graphs are semantically equivalent. Internally, it calls the graph_similarity function and compares it against the given threshold value. Args: ds1: A DataStore object instance representing your graph ds2: A DataStore object instance representing your graph prop_scores: A dictionary that can hold individual property scores, weights, contributing score, matching score and sum of weights. threshold: A numerical value between 0 and 100 to determine the minimum score to result in successfully calling both graphs equivalent. This value can be tuned. ignore_spec_version: A boolean indicating whether to test object types that belong to different spec versions (STIX 2.0 and STIX 2.1 for example). If set to True this check will be skipped. versioning_checks: A boolean indicating whether to test multiple revisions of the same object (when present) to maximize similarity against a particular version. If set to True the algorithm will perform this step. max_depth: A positive integer indicating the maximum recursion depth the algorithm can reach when de-referencing objects and performing the object_similarity algorithm. weight_dict: A dictionary that can be used to override what checks are done to objects in the similarity process. Returns: bool: True if the result of the graph similarity is greater than or equal to the threshold value. False otherwise. Warning: Object types need to have property weights defined for the similarity process. Otherwise, those objects will not influence the final score. The WEIGHTS dictionary under `stix2.equivalence.graph` can give you an idea on how to add new entries and pass them via the `weight_dict` argument. Similarly, the values or methods can be fine tuned for a particular use case. Note: Default weight_dict: .. include:: ../similarity_weights.rst Note: This implementation follows the Semantic Equivalence Committee Note. see `the Committee Note `__. """ return graph_equivalence( ds1, ds2, prop_scores, threshold, ignore_spec_version, versioning_checks, max_depth, **weight_dict )