cti-python-stix2/stix2/environment.py

409 lines
18 KiB
Python

"""Python STIX2 Environment API."""
import copy
from .datastore import CompositeDataSource, DataStoreMixin
from .equivalence.graph import graph_equivalence, graph_similarity
from .equivalence.object import object_equivalence, object_similarity
from .parsing import parse as _parse
class ObjectFactory(object):
"""Easily create STIX objects with default values for certain properties.
Args:
created_by_ref (optional): Default created_by_ref value to apply to all
objects created by this factory.
created (optional): Default created value to apply to all
objects created by this factory.
external_references (optional): Default `external_references` value to apply
to all objects created by this factory.
object_marking_refs (optional): Default `object_marking_refs` value to apply
to all objects created by this factory.
list_append (bool, optional): When a default is set for a list property like
`external_references` or `object_marking_refs` and a value for
that property is passed into `create()`, if this is set to True,
that value will be added to the list alongside the default. If
this is set to False, the passed in value will replace the
default. Defaults to True.
"""
def __init__(
self, created_by_ref=None, created=None,
external_references=None, object_marking_refs=None,
list_append=True,
):
self._defaults = {}
if created_by_ref:
self.set_default_creator(created_by_ref)
if created:
self.set_default_created(created)
if external_references:
self.set_default_external_refs(external_references)
if object_marking_refs:
self.set_default_object_marking_refs(object_marking_refs)
self._list_append = list_append
self._list_properties = ['external_references', 'object_marking_refs']
def set_default_creator(self, creator=None):
"""Set default value for the `created_by_ref` property.
"""
self._defaults['created_by_ref'] = creator
def set_default_created(self, created=None):
"""Set default value for the `created` property.
"""
self._defaults['created'] = created
# If the user provides a default "created" time, we also want to use
# that as the modified time.
self._defaults['modified'] = created
def set_default_external_refs(self, external_references=None):
"""Set default external references.
"""
self._defaults['external_references'] = external_references
def set_default_object_marking_refs(self, object_marking_refs=None):
"""Set default object markings.
"""
self._defaults['object_marking_refs'] = object_marking_refs
def create(self, cls, **kwargs):
"""Create a STIX object using object factory defaults.
Args:
cls: the python-stix2 class of the object to be created (eg. Indicator)
**kwargs: The property/value pairs of the STIX object to be created
"""
# Use self.defaults as the base, but update with any explicit args
# provided by the user.
properties = copy.deepcopy(self._defaults)
if kwargs:
if self._list_append:
# Append provided items to list properties instead of replacing them
for list_prop in set(self._list_properties).intersection(kwargs.keys(), properties.keys()):
kwarg_prop = kwargs.pop(list_prop)
if kwarg_prop is None:
del properties[list_prop]
continue
if not isinstance(properties[list_prop], list):
properties[list_prop] = [properties[list_prop]]
if isinstance(kwarg_prop, list):
properties[list_prop].extend(kwarg_prop)
else:
properties[list_prop].append(kwarg_prop)
properties.update(**kwargs)
return cls(**properties)
class Environment(DataStoreMixin):
"""Abstract away some of the nasty details of working with STIX content.
Args:
factory (ObjectFactory, optional): Factory for creating objects with common
defaults for certain properties.
store (DataStore, optional): Data store providing the source and sink for the
environment.
source (DataSource, optional): Source for retrieving STIX objects.
sink (DataSink, optional): Destination for saving STIX objects.
Invalid if `store` is also provided.
.. automethod:: get
.. automethod:: all_versions
.. automethod:: query
.. automethod:: creator_of
.. automethod:: relationships
.. automethod:: related_to
.. automethod:: add
"""
def __init__(self, factory=ObjectFactory(), store=None, source=None, sink=None):
self.factory = factory
self.source = CompositeDataSource()
if store:
self.source.add_data_source(store.source)
self.sink = store.sink
if source:
self.source.add_data_source(source)
if sink:
if store:
raise ValueError("Data store already provided! Environment may only have one data sink.")
self.sink = sink
def create(self, *args, **kwargs):
return self.factory.create(*args, **kwargs)
create.__doc__ = ObjectFactory.create.__doc__
def set_default_creator(self, *args, **kwargs):
return self.factory.set_default_creator(*args, **kwargs)
set_default_creator.__doc__ = ObjectFactory.set_default_creator.__doc__
def set_default_created(self, *args, **kwargs):
return self.factory.set_default_created(*args, **kwargs)
set_default_created.__doc__ = ObjectFactory.set_default_created.__doc__
def set_default_external_refs(self, *args, **kwargs):
return self.factory.set_default_external_refs(*args, **kwargs)
set_default_external_refs.__doc__ = ObjectFactory.set_default_external_refs.__doc__
def set_default_object_marking_refs(self, *args, **kwargs):
return self.factory.set_default_object_marking_refs(*args, **kwargs)
set_default_object_marking_refs.__doc__ = ObjectFactory.set_default_object_marking_refs.__doc__
def add_filters(self, *args, **kwargs):
return self.source.filters.add(*args, **kwargs)
def add_filter(self, *args, **kwargs):
return self.source.filters.add(*args, **kwargs)
def parse(self, *args, **kwargs):
return _parse(*args, **kwargs)
parse.__doc__ = _parse.__doc__
def creator_of(self, obj):
"""Retrieve the Identity refered to by the object's `created_by_ref`.
Args:
obj: The STIX object whose `created_by_ref` property will be looked
up.
Returns:
str: The STIX object's creator, or None, if the object contains no
`created_by_ref` property or the object's creator cannot be
found.
"""
creator_id = obj.get('created_by_ref', '')
if creator_id:
return self.get(creator_id)
else:
return None
@staticmethod
def object_similarity(
obj1, obj2, prop_scores={}, ds1=None, ds2=None,
ignore_spec_version=False, versioning_checks=False,
max_depth=1, **weight_dict
):
"""This method returns a measure of how similar the two objects are.
Args:
obj1: A stix2 object instance
obj2: A stix2 object instance
prop_scores: A dictionary that can hold individual property scores,
weights, contributing score, matching score and sum of weights.
ds1 (optional): A DataStore object instance from which to pull related objects
ds2 (optional): A DataStore object instance from which to pull related objects
ignore_spec_version: A boolean indicating whether to test object types
that belong to different spec versions (STIX 2.0 and STIX 2.1 for example).
If set to True this check will be skipped.
versioning_checks: A boolean indicating whether to test multiple revisions
of the same object (when present) to maximize similarity against a
particular version. If set to True the algorithm will perform this step.
max_depth: A positive integer indicating the maximum recursion depth the
algorithm can reach when de-referencing objects and performing the
object_similarity algorithm.
weight_dict: A dictionary that can be used to override what checks are done
to objects in the similarity process.
Returns:
float: A number between 0.0 and 100.0 as a measurement of similarity.
Warning:
Object types need to have property weights defined for the similarity process.
Otherwise, those objects will not influence the final score. The WEIGHTS
dictionary under `stix2.equivalence.object` can give you an idea on how to add
new entries and pass them via the `weight_dict` argument. Similarly, the values
or methods can be fine tuned for a particular use case.
Note:
Default weight_dict:
.. include:: ../similarity_weights.rst
Note:
This implementation follows the Semantic Equivalence Committee Note.
see `the Committee Note <link here>`__.
"""
return object_similarity(
obj1, obj2, prop_scores, ds1, ds2, ignore_spec_version,
versioning_checks, max_depth, **weight_dict
)
@staticmethod
def object_equivalence(
obj1, obj2, prop_scores={}, threshold=70, ds1=None, ds2=None,
ignore_spec_version=False, versioning_checks=False,
max_depth=1, **weight_dict
):
"""This method returns a true/false value if two objects are semantically equivalent.
Internally, it calls the object_similarity function and compares it against the given
threshold value.
Args:
obj1: A stix2 object instance
obj2: A stix2 object instance
prop_scores: A dictionary that can hold individual property scores,
weights, contributing score, matching score and sum of weights.
threshold: A numerical value between 0 and 100 to determine the minimum
score to result in successfully calling both objects equivalent. This
value can be tuned.
ds1 (optional): A DataStore object instance from which to pull related objects
ds2 (optional): A DataStore object instance from which to pull related objects
ignore_spec_version: A boolean indicating whether to test object types
that belong to different spec versions (STIX 2.0 and STIX 2.1 for example).
If set to True this check will be skipped.
versioning_checks: A boolean indicating whether to test multiple revisions
of the same object (when present) to maximize similarity against a
particular version. If set to True the algorithm will perform this step.
max_depth: A positive integer indicating the maximum recursion depth the
algorithm can reach when de-referencing objects and performing the
object_similarity algorithm.
weight_dict: A dictionary that can be used to override what checks are done
to objects in the similarity process.
Returns:
bool: True if the result of the object similarity is greater than or equal to
the threshold value. False otherwise.
Warning:
Object types need to have property weights defined for the similarity process.
Otherwise, those objects will not influence the final score. The WEIGHTS
dictionary under `stix2.equivalence.object` can give you an idea on how to add
new entries and pass them via the `weight_dict` argument. Similarly, the values
or methods can be fine tuned for a particular use case.
Note:
Default weight_dict:
.. include:: ../similarity_weights.rst
Note:
This implementation follows the Semantic Equivalence Committee Note.
see `the Committee Note <link here>`__.
"""
return object_equivalence(
obj1, obj2, prop_scores, threshold, ds1, ds2,
ignore_spec_version, versioning_checks, max_depth, **weight_dict
)
@staticmethod
def graph_similarity(
ds1, ds2, prop_scores={}, ignore_spec_version=False,
versioning_checks=False, max_depth=1, **weight_dict
):
"""This method returns a similarity score for two given graphs.
Each DataStore can contain a connected or disconnected graph and the
final result is weighted over the amount of objects we managed to compare.
This approach builds on top of the object-based similarity process
and each comparison can return a value between 0 and 100.
Args:
ds1: A DataStore object instance representing your graph
ds2: A DataStore object instance representing your graph
prop_scores: A dictionary that can hold individual property scores,
weights, contributing score, matching score and sum of weights.
ignore_spec_version: A boolean indicating whether to test object types
that belong to different spec versions (STIX 2.0 and STIX 2.1 for example).
If set to True this check will be skipped.
versioning_checks: A boolean indicating whether to test multiple revisions
of the same object (when present) to maximize similarity against a
particular version. If set to True the algorithm will perform this step.
max_depth: A positive integer indicating the maximum recursion depth the
algorithm can reach when de-referencing objects and performing the
object_similarity algorithm.
weight_dict: A dictionary that can be used to override what checks are done
to objects in the similarity process.
Returns:
float: A number between 0.0 and 100.0 as a measurement of similarity.
Warning:
Object types need to have property weights defined for the similarity process.
Otherwise, those objects will not influence the final score. The WEIGHTS
dictionary under `stix2.equivalence.graph` can give you an idea on how to add
new entries and pass them via the `weight_dict` argument. Similarly, the values
or methods can be fine tuned for a particular use case.
Note:
Default weight_dict:
.. include:: ../similarity_weights.rst
Note:
This implementation follows the Semantic Equivalence Committee Note.
see `the Committee Note <link here>`__.
"""
return graph_similarity(
ds1, ds2, prop_scores, ignore_spec_version,
versioning_checks, max_depth, **weight_dict
)
@staticmethod
def graph_equivalence(
ds1, ds2, prop_scores={}, threshold=70,
ignore_spec_version=False, versioning_checks=False,
max_depth=1, **weight_dict
):
"""This method returns a true/false value if two graphs are semantically equivalent.
Internally, it calls the graph_similarity function and compares it against the given
threshold value.
Args:
ds1: A DataStore object instance representing your graph
ds2: A DataStore object instance representing your graph
prop_scores: A dictionary that can hold individual property scores,
weights, contributing score, matching score and sum of weights.
threshold: A numerical value between 0 and 100 to determine the minimum
score to result in successfully calling both graphs equivalent. This
value can be tuned.
ignore_spec_version: A boolean indicating whether to test object types
that belong to different spec versions (STIX 2.0 and STIX 2.1 for example).
If set to True this check will be skipped.
versioning_checks: A boolean indicating whether to test multiple revisions
of the same object (when present) to maximize similarity against a
particular version. If set to True the algorithm will perform this step.
max_depth: A positive integer indicating the maximum recursion depth the
algorithm can reach when de-referencing objects and performing the
object_similarity algorithm.
weight_dict: A dictionary that can be used to override what checks are done
to objects in the similarity process.
Returns:
bool: True if the result of the graph similarity is greater than or equal to
the threshold value. False otherwise.
Warning:
Object types need to have property weights defined for the similarity process.
Otherwise, those objects will not influence the final score. The WEIGHTS
dictionary under `stix2.equivalence.graph` can give you an idea on how to add
new entries and pass them via the `weight_dict` argument. Similarly, the values
or methods can be fine tuned for a particular use case.
Note:
Default weight_dict:
.. include:: ../similarity_weights.rst
Note:
This implementation follows the Semantic Equivalence Committee Note.
see `the Committee Note <link here>`__.
"""
return graph_equivalence(
ds1, ds2, prop_scores, threshold, ignore_spec_version,
versioning_checks, max_depth, **weight_dict
)