624 lines
24 KiB
Python
624 lines
24 KiB
Python
"""Python APIs for STIX 2 Object-based Semantic Equivalence and Similarity."""
|
|
import collections
|
|
import itertools
|
|
import logging
|
|
import time
|
|
|
|
from ...datastore import DataSource, DataStoreMixin, Filter
|
|
from ...utils import STIXdatetime, parse_into_datetime
|
|
from ..pattern import equivalent_patterns
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def object_equivalence(
|
|
obj1, obj2, prop_scores={}, threshold=70, ds1=None,
|
|
ds2=None, ignore_spec_version=False,
|
|
versioning_checks=False, max_depth=1, **weight_dict
|
|
):
|
|
"""This method returns a true/false value if two objects are semantically equivalent.
|
|
Internally, it calls the object_similarity function and compares it against the given
|
|
threshold value.
|
|
|
|
Args:
|
|
obj1: A stix2 object instance
|
|
obj2: A stix2 object instance
|
|
prop_scores: A dictionary that can hold individual property scores,
|
|
weights, contributing score, matching score and sum of weights.
|
|
threshold: A numerical value between 0 and 100 to determine the minimum
|
|
score to result in successfully calling both objects equivalent. This
|
|
value can be tuned.
|
|
ds1 (optional): A DataStore object instance from which to pull related objects
|
|
ds2 (optional): A DataStore object instance from which to pull related objects
|
|
ignore_spec_version: A boolean indicating whether to test object types
|
|
that belong to different spec versions (STIX 2.0 and STIX 2.1 for example).
|
|
If set to True this check will be skipped.
|
|
versioning_checks: A boolean indicating whether to test multiple revisions
|
|
of the same object (when present) to maximize similarity against a
|
|
particular version. If set to True the algorithm will perform this step.
|
|
max_depth: A positive integer indicating the maximum recursion depth the
|
|
algorithm can reach when de-referencing objects and performing the
|
|
object_similarity algorithm.
|
|
weight_dict: A dictionary that can be used to override what checks are done
|
|
to objects in the similarity process.
|
|
|
|
Returns:
|
|
bool: True if the result of the object similarity is greater than or equal to
|
|
the threshold value. False otherwise.
|
|
|
|
Warning:
|
|
Object types need to have property weights defined for the similarity process.
|
|
Otherwise, those objects will not influence the final score. The WEIGHTS
|
|
dictionary under `stix2.equivalence.object` can give you an idea on how to add
|
|
new entries and pass them via the `weight_dict` argument. Similarly, the values
|
|
or methods can be fine tuned for a particular use case.
|
|
|
|
Note:
|
|
Default weight_dict:
|
|
|
|
.. include:: ../../similarity_weights.rst
|
|
|
|
Note:
|
|
This implementation follows the Semantic Equivalence Committee Note.
|
|
see `the Committee Note <link here>`__.
|
|
|
|
"""
|
|
similarity_result = object_similarity(
|
|
obj1, obj2, prop_scores, ds1, ds2, ignore_spec_version,
|
|
versioning_checks, max_depth, **weight_dict
|
|
)
|
|
if similarity_result >= threshold:
|
|
return True
|
|
return False
|
|
|
|
|
|
def object_similarity(
|
|
obj1, obj2, prop_scores={}, ds1=None, ds2=None,
|
|
ignore_spec_version=False, versioning_checks=False,
|
|
max_depth=1, **weight_dict
|
|
):
|
|
"""This method returns a measure of similarity depending on how
|
|
similar the two objects are.
|
|
|
|
Args:
|
|
obj1: A stix2 object instance
|
|
obj2: A stix2 object instance
|
|
prop_scores: A dictionary that can hold individual property scores,
|
|
weights, contributing score, matching score and sum of weights.
|
|
ds1 (optional): A DataStore object instance from which to pull related objects
|
|
ds2 (optional): A DataStore object instance from which to pull related objects
|
|
ignore_spec_version: A boolean indicating whether to test object types
|
|
that belong to different spec versions (STIX 2.0 and STIX 2.1 for example).
|
|
If set to True this check will be skipped.
|
|
versioning_checks: A boolean indicating whether to test multiple revisions
|
|
of the same object (when present) to maximize similarity against a
|
|
particular version. If set to True the algorithm will perform this step.
|
|
max_depth: A positive integer indicating the maximum recursion depth the
|
|
algorithm can reach when de-referencing objects and performing the
|
|
object_similarity algorithm.
|
|
weight_dict: A dictionary that can be used to override what checks are done
|
|
to objects in the similarity process.
|
|
|
|
Returns:
|
|
float: A number between 0.0 and 100.0 as a measurement of similarity.
|
|
|
|
Warning:
|
|
Object types need to have property weights defined for the similarity process.
|
|
Otherwise, those objects will not influence the final score. The WEIGHTS
|
|
dictionary under `stix2.equivalence.object` can give you an idea on how to add
|
|
new entries and pass them via the `weight_dict` argument. Similarly, the values
|
|
or methods can be fine tuned for a particular use case.
|
|
|
|
Note:
|
|
Default weight_dict:
|
|
|
|
.. include:: ../../similarity_weights.rst
|
|
|
|
Note:
|
|
This implementation follows the Semantic Equivalence Committee Note.
|
|
see `the Committee Note <link here>`__.
|
|
|
|
"""
|
|
weights = WEIGHTS.copy()
|
|
|
|
if weight_dict:
|
|
weights.update(weight_dict)
|
|
|
|
weights["_internal"] = {
|
|
"ignore_spec_version": ignore_spec_version,
|
|
"versioning_checks": versioning_checks,
|
|
"ds1": ds1,
|
|
"ds2": ds2,
|
|
"max_depth": max_depth,
|
|
}
|
|
|
|
type1, type2 = obj1["type"], obj2["type"]
|
|
|
|
if type1 != type2:
|
|
raise ValueError('The objects to compare must be of the same type!')
|
|
|
|
if ignore_spec_version is False and obj1.get("spec_version", "2.0") != obj2.get("spec_version", "2.0"):
|
|
raise ValueError('The objects to compare must be of the same spec version!')
|
|
|
|
try:
|
|
weights[type1]
|
|
except KeyError:
|
|
logger.warning("'%s' type has no 'weights' dict specified & thus no object similarity method to call!", type1)
|
|
sum_weights = matching_score = 0
|
|
else:
|
|
try:
|
|
method = weights[type1]["method"]
|
|
except KeyError:
|
|
logger.debug("Starting object similarity process between: '%s' and '%s'", obj1["id"], obj2["id"])
|
|
matching_score = 0.0
|
|
sum_weights = 0.0
|
|
|
|
for prop in weights[type1]:
|
|
if check_property_present(prop, obj1, obj2):
|
|
w = weights[type1][prop][0]
|
|
comp_funct = weights[type1][prop][1]
|
|
prop_scores[prop] = {}
|
|
|
|
if comp_funct == partial_timestamp_based:
|
|
contributing_score = w * comp_funct(obj1[prop], obj2[prop], weights[type1]["tdelta"])
|
|
elif comp_funct == partial_location_distance:
|
|
threshold = weights[type1]["threshold"]
|
|
contributing_score = w * comp_funct(obj1["latitude"], obj1["longitude"], obj2["latitude"], obj2["longitude"], threshold)
|
|
elif comp_funct == reference_check or comp_funct == list_reference_check:
|
|
if max_depth > 0:
|
|
weights["_internal"]["max_depth"] = max_depth - 1
|
|
ds1, ds2 = weights["_internal"]["ds1"], weights["_internal"]["ds2"]
|
|
if _datastore_check(ds1, ds2):
|
|
contributing_score = w * comp_funct(obj1[prop], obj2[prop], ds1, ds2, **weights)
|
|
elif comp_funct == reference_check:
|
|
comp_funct = exact_match
|
|
contributing_score = w * comp_funct(obj1[prop], obj2[prop])
|
|
elif comp_funct == list_reference_check:
|
|
comp_funct = partial_list_based
|
|
contributing_score = w * comp_funct(obj1[prop], obj2[prop])
|
|
prop_scores[prop]["check_type"] = comp_funct.__name__
|
|
else:
|
|
continue # prevent excessive recursion
|
|
weights["_internal"]["max_depth"] = max_depth
|
|
else:
|
|
contributing_score = w * comp_funct(obj1[prop], obj2[prop])
|
|
|
|
sum_weights += w
|
|
matching_score += contributing_score
|
|
|
|
prop_scores[prop]["weight"] = w
|
|
prop_scores[prop]["contributing_score"] = contributing_score
|
|
logger.debug("'%s' check -- weight: %s, contributing score: %s", prop, w, contributing_score)
|
|
|
|
prop_scores["matching_score"] = matching_score
|
|
prop_scores["sum_weights"] = sum_weights
|
|
logger.debug("Matching Score: %s, Sum of Weights: %s", matching_score, sum_weights)
|
|
else:
|
|
logger.debug("Starting object similarity process between: '%s' and '%s'", obj1["id"], obj2["id"])
|
|
try:
|
|
matching_score, sum_weights = method(obj1, obj2, prop_scores, **weights[type1])
|
|
except TypeError:
|
|
# method doesn't support detailed output with prop_scores
|
|
matching_score, sum_weights = method(obj1, obj2, **weights[type1])
|
|
logger.debug("Matching Score: %s, Sum of Weights: %s", matching_score, sum_weights)
|
|
|
|
if sum_weights <= 0:
|
|
return 0
|
|
equivalence_score = (matching_score / sum_weights) * 100.0
|
|
return equivalence_score
|
|
|
|
|
|
def check_property_present(prop, obj1, obj2):
|
|
"""Helper method checks if a property is present on both objects."""
|
|
if prop == "longitude_latitude":
|
|
if all(x in obj1 and x in obj2 for x in ('latitude', 'longitude')):
|
|
return True
|
|
elif prop in obj1 and prop in obj2:
|
|
return True
|
|
return False
|
|
|
|
|
|
def partial_timestamp_based(t1, t2, tdelta):
|
|
"""Performs a timestamp-based matching via checking how close one timestamp is to another.
|
|
|
|
Args:
|
|
t1: A datetime string or STIXdatetime object.
|
|
t2: A datetime string or STIXdatetime object.
|
|
tdelta (float): A given time delta. This number is multiplied by 86400 (1 day) to
|
|
extend or shrink your time change tolerance.
|
|
|
|
Returns:
|
|
float: Number between 0.0 and 1.0 depending on match criteria.
|
|
|
|
"""
|
|
if not isinstance(t1, STIXdatetime):
|
|
t1 = parse_into_datetime(t1)
|
|
if not isinstance(t2, STIXdatetime):
|
|
t2 = parse_into_datetime(t2)
|
|
t1, t2 = time.mktime(t1.timetuple()), time.mktime(t2.timetuple())
|
|
result = 1 - min(abs(t1 - t2) / (86400 * tdelta), 1)
|
|
logger.debug("--\t\tpartial_timestamp_based '%s' '%s' tdelta: '%s'\tresult: '%s'", t1, t2, tdelta, result)
|
|
return result
|
|
|
|
|
|
def partial_list_based(l1, l2):
|
|
"""Performs a partial list matching via finding the intersection between
|
|
common values. Repeated values are counted only once. This method can be
|
|
used for *_refs equality checks when de-reference is not possible.
|
|
|
|
Args:
|
|
l1: A list of values.
|
|
l2: A list of values.
|
|
|
|
Returns:
|
|
float: 1.0 if the value matches exactly, 0.0 otherwise.
|
|
|
|
"""
|
|
l1_set, l2_set = set(l1), set(l2)
|
|
result = len(l1_set.intersection(l2_set)) / max(len(l1_set), len(l2_set))
|
|
logger.debug("--\t\tpartial_list_based '%s' '%s'\tresult: '%s'", l1, l2, result)
|
|
return result
|
|
|
|
|
|
def exact_match(val1, val2):
|
|
"""Performs an exact value match based on two values. This method can be
|
|
used for *_ref equality check when de-reference is not possible.
|
|
|
|
Args:
|
|
val1: A value suitable for an equality test.
|
|
val2: A value suitable for an equality test.
|
|
|
|
Returns:
|
|
float: 1.0 if the value matches exactly, 0.0 otherwise.
|
|
|
|
"""
|
|
result = 0.0
|
|
if val1 == val2:
|
|
result = 1.0
|
|
logger.debug("--\t\texact_match '%s' '%s'\tresult: '%s'", val1, val2, result)
|
|
return result
|
|
|
|
|
|
def partial_string_based(str1, str2):
|
|
"""Performs a partial string match using the Jaro-Winkler distance algorithm.
|
|
|
|
Args:
|
|
str1: A string value to check.
|
|
str2: A string value to check.
|
|
|
|
Returns:
|
|
float: Number between 0.0 and 1.0 depending on match criteria.
|
|
|
|
"""
|
|
from rapidfuzz import fuzz
|
|
result = fuzz.token_sort_ratio(str1, str2)
|
|
logger.debug("--\t\tpartial_string_based '%s' '%s'\tresult: '%s'", str1, str2, result)
|
|
return result / 100.0
|
|
|
|
|
|
def custom_pattern_based(pattern1, pattern2):
|
|
"""Performs a matching on Indicator Patterns.
|
|
|
|
Args:
|
|
pattern1: An Indicator pattern
|
|
pattern2: An Indicator pattern
|
|
|
|
Returns:
|
|
float: Number between 0.0 and 1.0 depending on match criteria.
|
|
|
|
"""
|
|
return equivalent_patterns(pattern1, pattern2)
|
|
|
|
|
|
def partial_external_reference_based(ext_refs1, ext_refs2):
|
|
"""Performs a matching on External References.
|
|
|
|
Args:
|
|
ext_refs1: A list of external references.
|
|
ext_refs2: A list of external references.
|
|
|
|
Returns:
|
|
float: Number between 0.0 and 1.0 depending on matches.
|
|
|
|
"""
|
|
allowed = {"veris", "cve", "capec", "mitre-attack"}
|
|
matches = 0
|
|
|
|
ref_pairs = itertools.chain(
|
|
itertools.product(ext_refs1, ext_refs2),
|
|
)
|
|
|
|
for ext_ref1, ext_ref2 in ref_pairs:
|
|
sn_match = False
|
|
ei_match = False
|
|
url_match = False
|
|
source_name = None
|
|
|
|
if check_property_present("source_name", ext_ref1, ext_ref2):
|
|
if ext_ref1["source_name"] == ext_ref2["source_name"]:
|
|
source_name = ext_ref1["source_name"]
|
|
sn_match = True
|
|
if check_property_present("external_id", ext_ref1, ext_ref2):
|
|
if ext_ref1["external_id"] == ext_ref2["external_id"]:
|
|
ei_match = True
|
|
if check_property_present("url", ext_ref1, ext_ref2):
|
|
if ext_ref1["url"] == ext_ref2["url"]:
|
|
url_match = True
|
|
|
|
# Special case: if source_name is a STIX defined name and either
|
|
# external_id or url match then its a perfect match and other entries
|
|
# can be ignored.
|
|
if sn_match and (ei_match or url_match) and source_name in allowed:
|
|
result = 1.0
|
|
logger.debug(
|
|
"--\t\tpartial_external_reference_based '%s' '%s'\tresult: '%s'",
|
|
ext_refs1, ext_refs2, result,
|
|
)
|
|
return result
|
|
|
|
# Regular check. If the source_name (not STIX-defined) or external_id or
|
|
# url matches then we consider the entry a match.
|
|
if (sn_match or ei_match or url_match) and source_name not in allowed:
|
|
matches += 1
|
|
|
|
result = matches / max(len(ext_refs1), len(ext_refs2))
|
|
logger.debug(
|
|
"--\t\tpartial_external_reference_based '%s' '%s'\tresult: '%s'",
|
|
ext_refs1, ext_refs2, result,
|
|
)
|
|
return result
|
|
|
|
|
|
def partial_location_distance(lat1, long1, lat2, long2, threshold):
|
|
"""Given two coordinates perform a matching based on its distance using the Haversine Formula.
|
|
|
|
Args:
|
|
lat1: Latitude value for first coordinate point.
|
|
lat2: Latitude value for second coordinate point.
|
|
long1: Longitude value for first coordinate point.
|
|
long2: Longitude value for second coordinate point.
|
|
threshold (float): A kilometer measurement for the threshold distance between these two points.
|
|
|
|
Returns:
|
|
float: Number between 0.0 and 1.0 depending on match.
|
|
|
|
"""
|
|
from haversine import Unit, haversine
|
|
distance = haversine((lat1, long1), (lat2, long2), unit=Unit.KILOMETERS)
|
|
result = 1 - (distance / threshold)
|
|
logger.debug(
|
|
"--\t\tpartial_location_distance '%s' '%s' threshold: '%s'\tresult: '%s'",
|
|
(lat1, long1), (lat2, long2), threshold, result,
|
|
)
|
|
return result
|
|
|
|
|
|
def _versioned_checks(ref1, ref2, ds1, ds2, **weights):
|
|
"""Checks multiple object versions if present in graph.
|
|
Maximizes for the similarity score of a particular version."""
|
|
results = {}
|
|
|
|
pairs = _object_pairs(
|
|
_bucket_per_type(ds1.query([Filter("id", "=", ref1)])),
|
|
_bucket_per_type(ds2.query([Filter("id", "=", ref2)])),
|
|
weights,
|
|
)
|
|
ignore_spec_version = weights["_internal"]["ignore_spec_version"]
|
|
versioning_checks = weights["_internal"]["versioning_checks"]
|
|
max_depth = weights["_internal"]["max_depth"]
|
|
|
|
for object1, object2 in pairs:
|
|
result = object_similarity(
|
|
object1, object2, ds1=ds1, ds2=ds2,
|
|
ignore_spec_version=ignore_spec_version,
|
|
versioning_checks=versioning_checks,
|
|
max_depth=max_depth, **weights,
|
|
)
|
|
if ref1 not in results:
|
|
results[ref1] = {"matched": ref2, "value": result}
|
|
elif result > results[ref1]["value"]:
|
|
results[ref1] = {"matched": ref2, "value": result}
|
|
|
|
result = results.get(ref1, {}).get("value", 0.0)
|
|
logger.debug(
|
|
"--\t\t_versioned_checks '%s' '%s'\tresult: '%s'",
|
|
ref1, ref2, result,
|
|
)
|
|
return result
|
|
|
|
|
|
def reference_check(ref1, ref2, ds1, ds2, **weights):
|
|
"""For two references, de-reference the object and perform object_similarity.
|
|
The score influences the result of an edge check."""
|
|
type1, type2 = ref1.split("--")[0], ref2.split("--")[0]
|
|
result = 0.0
|
|
|
|
if type1 == type2 and type1 in weights:
|
|
ignore_spec_version = weights["_internal"]["ignore_spec_version"]
|
|
versioning_checks = weights["_internal"]["versioning_checks"]
|
|
max_depth = weights["_internal"]["max_depth"]
|
|
if versioning_checks:
|
|
result = _versioned_checks(ref1, ref2, ds1, ds2, **weights) / 100.0
|
|
else:
|
|
o1, o2 = ds1.get(ref1), ds2.get(ref2)
|
|
if o1 and o2:
|
|
result = object_similarity(
|
|
o1, o2, ds1=ds1, ds2=ds2,
|
|
ignore_spec_version=ignore_spec_version,
|
|
versioning_checks=versioning_checks,
|
|
max_depth=max_depth, **weights,
|
|
) / 100.0
|
|
|
|
logger.debug(
|
|
"--\t\treference_check '%s' '%s'\tresult: '%s'",
|
|
ref1, ref2, result,
|
|
)
|
|
return result
|
|
|
|
|
|
def list_reference_check(refs1, refs2, ds1, ds2, **weights):
|
|
"""For objects that contain multiple references (i.e., object_refs) perform
|
|
the same de-reference procedure and perform object_similarity.
|
|
The score influences the objects containing these references. The result is
|
|
weighted on the amount of unique objects that could 1) be de-referenced 2) """
|
|
results = {}
|
|
|
|
pairs = _object_pairs(
|
|
_bucket_per_type(refs1, "id-split"),
|
|
_bucket_per_type(refs2, "id-split"),
|
|
weights,
|
|
)
|
|
|
|
for ref1, ref2 in pairs:
|
|
type1, type2 = ref1.split("--")[0], ref2.split("--")[0]
|
|
if type1 == type2:
|
|
score = reference_check(ref1, ref2, ds1, ds2, **weights)
|
|
|
|
if ref1 not in results:
|
|
results[ref1] = {"matched": ref2, "value": score}
|
|
elif score > results[ref1]["value"]:
|
|
results[ref1] = {"matched": ref2, "value": score}
|
|
|
|
if ref2 not in results:
|
|
results[ref2] = {"matched": ref1, "value": score}
|
|
elif score > results[ref2]["value"]:
|
|
results[ref2] = {"matched": ref1, "value": score}
|
|
|
|
result = 0.0
|
|
total_sum = sum(x["value"] for x in results.values())
|
|
max_score = len(results)
|
|
|
|
if max_score > 0:
|
|
result = total_sum / max_score
|
|
|
|
logger.debug(
|
|
"--\t\tlist_reference_check '%s' '%s'\ttotal_sum: '%s'\tmax_score: '%s'\tresult: '%s'",
|
|
refs1, refs2, total_sum, max_score, result,
|
|
)
|
|
return result
|
|
|
|
|
|
def _datastore_check(ds1, ds2):
|
|
if (
|
|
issubclass(ds1.__class__, (DataStoreMixin, DataSource)) or
|
|
issubclass(ds2.__class__, (DataStoreMixin, DataSource))
|
|
):
|
|
return True
|
|
return False
|
|
|
|
|
|
def _bucket_per_type(graph, mode="type"):
|
|
"""Given a list of objects or references, bucket them by type.
|
|
Depending on the list type: extract from 'type' property or using
|
|
the 'id'.
|
|
"""
|
|
buckets = collections.defaultdict(list)
|
|
if mode == "type":
|
|
[buckets[obj["type"]].append(obj) for obj in graph]
|
|
elif mode == "id-split":
|
|
[buckets[obj.split("--")[0]].append(obj) for obj in graph]
|
|
return buckets
|
|
|
|
|
|
def _object_pairs(graph1, graph2, weights):
|
|
"""Returns a generator with the product of the comparable
|
|
objects for the graph similarity process. It determines
|
|
objects in common between graphs and objects with weights.
|
|
"""
|
|
types_in_common = set(graph1.keys()).intersection(graph2.keys())
|
|
testable_types = types_in_common.intersection(weights.keys())
|
|
|
|
return itertools.chain.from_iterable(
|
|
itertools.product(graph1[stix_type], graph2[stix_type])
|
|
for stix_type in testable_types
|
|
)
|
|
|
|
|
|
# default weights used for the similarity process
|
|
WEIGHTS = {
|
|
"attack-pattern": {
|
|
"name": (30, partial_string_based),
|
|
"external_references": (70, partial_external_reference_based),
|
|
},
|
|
"campaign": {
|
|
"name": (60, partial_string_based),
|
|
"aliases": (40, partial_list_based),
|
|
},
|
|
"course-of-action": {
|
|
"name": (60, partial_string_based),
|
|
"external_references": (40, partial_external_reference_based),
|
|
},
|
|
"grouping": {
|
|
"name": (20, partial_string_based),
|
|
"context": (20, partial_string_based),
|
|
"object_refs": (60, list_reference_check),
|
|
},
|
|
"identity": {
|
|
"name": (60, partial_string_based),
|
|
"identity_class": (20, exact_match),
|
|
"sectors": (20, partial_list_based),
|
|
},
|
|
"incident": {
|
|
"name": (60, partial_string_based),
|
|
"external_references": (40, partial_external_reference_based),
|
|
},
|
|
"indicator": {
|
|
"indicator_types": (15, partial_list_based),
|
|
"pattern": (80, custom_pattern_based),
|
|
"valid_from": (5, partial_timestamp_based),
|
|
"tdelta": 1, # One day interval
|
|
},
|
|
"intrusion-set": {
|
|
"name": (20, partial_string_based),
|
|
"external_references": (60, partial_external_reference_based),
|
|
"aliases": (20, partial_list_based),
|
|
},
|
|
"location": {
|
|
"longitude_latitude": (34, partial_location_distance),
|
|
"region": (33, exact_match),
|
|
"country": (33, exact_match),
|
|
"threshold": 1000.0,
|
|
},
|
|
"malware": {
|
|
"malware_types": (20, partial_list_based),
|
|
"name": (80, partial_string_based),
|
|
},
|
|
"marking-definition": {
|
|
"name": (20, exact_match),
|
|
"definition": (60, exact_match),
|
|
"definition_type": (20, exact_match),
|
|
},
|
|
"relationship": {
|
|
"relationship_type": (20, exact_match),
|
|
"source_ref": (40, reference_check),
|
|
"target_ref": (40, reference_check),
|
|
},
|
|
"report": {
|
|
"name": (30, partial_string_based),
|
|
"published": (10, partial_timestamp_based),
|
|
"object_refs": (60, list_reference_check),
|
|
"tdelta": 1, # One day interval
|
|
},
|
|
"sighting": {
|
|
"first_seen": (5, partial_timestamp_based),
|
|
"last_seen": (5, partial_timestamp_based),
|
|
"sighting_of_ref": (40, reference_check),
|
|
"observed_data_refs": (20, list_reference_check),
|
|
"where_sighted_refs": (20, list_reference_check),
|
|
"summary": (10, exact_match),
|
|
},
|
|
"threat-actor": {
|
|
"name": (60, partial_string_based),
|
|
"threat_actor_types": (20, partial_list_based),
|
|
"aliases": (20, partial_list_based),
|
|
},
|
|
"tool": {
|
|
"tool_types": (20, partial_list_based),
|
|
"name": (80, partial_string_based),
|
|
},
|
|
"vulnerability": {
|
|
"name": (30, partial_string_based),
|
|
"external_references": (70, partial_external_reference_based),
|
|
},
|
|
} # :autodoc-skip:
|