45 lines
1.6 KiB
Python
45 lines
1.6 KiB
Python
import datetime as dt
|
|
|
|
import pytz
|
|
|
|
FAKE_TIME = dt.datetime(2017, 1, 1, 12, 34, 56, tzinfo=pytz.utc)
|
|
|
|
ATTACK_PATTERN_ID = "attack-pattern--0c7b5b88-8ff7-4a4d-aa9d-feb398cd0061"
|
|
CAMPAIGN_ID = "campaign--8e2e2d2b-17d4-4cbf-938f-98ee46b3cd3f"
|
|
COURSE_OF_ACTION_ID = "course-of-action--8e2e2d2b-17d4-4cbf-938f-98ee46b3cd3f"
|
|
IDENTITY_ID = "identity--311b2d2d-f010-5473-83ec-1edf84858f4c"
|
|
INDICATOR_ID = "indicator--01234567-89ab-cdef-0123-456789abcdef"
|
|
INTRUSION_SET_ID = "intrusion-set--4e78f46f-a023-4e5f-bc24-71b3ca22ec29"
|
|
MALWARE_ID = "malware--fedcba98-7654-3210-fedc-ba9876543210"
|
|
MARKING_DEFINITION_ID = "marking-definition--613f2e26-407d-48c7-9eca-b8e91df99dc9"
|
|
OBSERVED_DATA_ID = "observed-data--b67d30ff-02ac-498a-92f9-32f845f448cf"
|
|
REPORT_ID = "report--84e4d88f-44ea-4bcd-bbf3-b2c1c320bcb3"
|
|
RELATIONSHIP_ID = "relationship--00000000-1111-2222-3333-444444444444"
|
|
THREAT_ACTOR_ID = "threat-actor--8e2e2d2b-17d4-4cbf-938f-98ee46b3cd3f"
|
|
TOOL_ID = "tool--8e2e2d2b-17d4-4cbf-938f-98ee46b3cd3f"
|
|
SIGHTING_ID = "sighting--bfbc19db-ec35-4e45-beed-f8bde2a772fb"
|
|
VULNERABILITY_ID = "vulnerability--0c7b5b88-8ff7-4a4d-aa9d-feb398cd0061"
|
|
|
|
# Minimum required args for an Indicator instance
|
|
INDICATOR_KWARGS = dict(
|
|
labels=['malicious-activity'],
|
|
pattern="[file:hashes.MD5 = 'd41d8cd98f00b204e9800998ecf8427e']",
|
|
)
|
|
|
|
# Minimum required args for a Malware instance
|
|
MALWARE_KWARGS = dict(
|
|
labels=['ransomware'],
|
|
name="Cryptolocker",
|
|
)
|
|
|
|
# Minimum required args for a Relationship instance
|
|
RELATIONSHIP_KWARGS = dict(
|
|
relationship_type="indicates",
|
|
source_ref=INDICATOR_ID,
|
|
target_ref=MALWARE_ID,
|
|
)
|
|
|
|
SIGHTING_KWARGS = dict(
|
|
sighting_of_ref=INDICATOR_ID,
|
|
)
|