misp-galaxy/tools/mitre-cti/v2.0/create_mitre-galaxy.py

183 lines
7.9 KiB
Python
Executable File

#!/usr/bin/env python3
import json
import re
import os
import argparse
parser = argparse.ArgumentParser(description='Create a couple galaxy/cluster with cti\'s intrusion-sets\nMust be in the mitre/cti/enterprise-attack/intrusion-set folder')
parser.add_argument("-p", "--path", required=True, help="Path of the mitre/cti folder")
args = parser.parse_args()
values = []
misp_dir = '../../../'
domains = ['enterprise-attack', 'mobile-attack', 'pre-attack']
types = ['attack-pattern', 'course-of-action', 'intrusion-set', 'malware', 'tool']
all_data = {} # variable that will contain everything
# read in the non-MITRE data
# we need this to be able to build a list of non-MITRE-UUIDs which we will use later on
# to remove relations that are from MITRE.
# the reasoning is that the new MITRE export might contain less relationships than it did before
# so we cannot migrate all existing relationships as such
non_mitre_uuids = set()
for fname in os.listdir(os.path.join(misp_dir, 'clusters')):
if 'mitre' in fname:
continue
if '.json' in fname:
# print(fname)
with open(os.path.join(misp_dir, 'clusters', fname)) as f_in:
cluster_data = json.load(f_in)
for cluster in cluster_data['values']:
non_mitre_uuids.add(cluster['uuid'])
# read in existing MITRE data
# first build a data set of the MISP Galaxy ATT&CK elements by using the UUID as reference, this speeds up lookups later on.
# at the end we will convert everything again to separate datasets
all_data_uuid = {}
for t in types:
fname = os.path.join(misp_dir, 'clusters', 'mitre-{}.json'.format(t))
if os.path.exists(fname):
# print("##### {}".format(fname))
with open(fname) as f:
file_data = json.load(f)
# print(file_data)
for value in file_data['values']:
# remove (old)MITRE relations, and keep non-MITRE relations
if 'related' in value:
related_original = value['related']
related_new = []
for rel in related_original:
if rel['dest-uuid'] in non_mitre_uuids:
related_new.append(rel)
value['related'] = related_new
# find and handle duplicate uuids
if value['uuid'] in all_data_uuid:
# exit("ERROR: Something is really wrong, we seem to have duplicates.")
# if it already exists we need to copy over all the data manually to merge it
# on the other hand, from a manual analysis it looks like it's mostly the relations that are different
# so now we will just copy over the relationships
# actually, at time of writing the code below results in no change as the new items always contained more than the previously seen items
value_orig = all_data_uuid[value['uuid']]
if 'related' in value_orig:
for related_item in value_orig['related']:
if related_item not in value['related']:
value['related'].append(related_item)
all_data_uuid[value['uuid']] = value
# now load the MITRE ATT&CK
for domain in domains:
attack_dir = os.path.join(args.path, domain)
if not os.path.exists(attack_dir):
exit("ERROR: MITRE ATT&CK folder incorrect")
with open(os.path.join(attack_dir, domain + '.json')) as f:
attack_data = json.load(f)
for item in attack_data['objects']:
if item['type'] not in types:
continue
# print(json.dumps(item, indent=2, sort_keys=True, ensure_ascii=False))
try:
# build the new data structure
value = {}
uuid = re.search('--(.*)$', item['id']).group(0)[2:]
# item exist already in the all_data set
update = False
if uuid in all_data_uuid:
value = all_data_uuid[uuid]
if 'description' in item:
value['description'] = item['description']
value['value'] = item['name'] + ' - ' + item['external_references'][0]['external_id']
value['meta'] = {}
value['meta']['refs'] = []
value['uuid'] = re.search('--(.*)$', item['id']).group(0)[2:]
if 'aliases' in item:
value['meta']['synonyms'] = item['aliases']
if 'x_mitre_aliases' in item:
value['meta']['synonyms'] = item['x_mitre_aliases']
for reference in item['external_references']:
if 'url' in reference and reference['url'] not in value['meta']['refs']:
value['meta']['refs'].append(reference['url'])
if 'external_id' in reference:
value['meta']['external_id'] = reference['external_id']
if 'kill_chain_phases' in item: # many (but not all) attack-patterns have this
value['meta']['kill_chain'] = []
for killchain in item['kill_chain_phases']:
value['meta']['kill_chain'].append(killchain['kill_chain_name'] + ':' + killchain['phase_name'])
if 'x_mitre_data_sources' in item:
value['meta']['mitre_data_sources'] = item['x_mitre_data_sources']
if 'x_mitre_platforms' in item:
value['meta']['mitre_platforms'] = item['x_mitre_platforms']
# TODO add the other x_mitre elements dynamically
# relationships will be build separately afterwards
value['type'] = item['type'] # remove this before dump to json
# print(json.dumps(value, sort_keys=True, indent=2))
all_data_uuid[uuid] = value
except Exception as e:
print(json.dumps(item, sort_keys=True, indent=2))
import traceback
traceback.print_exc()
# process the 'relationship' type as we now know the existence of all ATT&CK uuids
for item in attack_data['objects']:
if item['type'] != 'relationship':
continue
# print(json.dumps(item, indent=2, sort_keys=True, ensure_ascii=False))
rel_type = item['relationship_type']
dest_uuid = re.findall(r'--([0-9a-f-]+)', item['target_ref']).pop()
source_uuid = re.findall(r'--([0-9a-f-]+)', item['source_ref']).pop()
tags = []
# add the relation in the defined way
rel_source = {
"dest-uuid": dest_uuid,
"tags": [
"estimative-language:likelihood-probability=\"almost-certain\""
],
"type": rel_type
}
if 'related' not in all_data_uuid[source_uuid]:
all_data_uuid[source_uuid]['related'] = []
if rel_source not in all_data_uuid[source_uuid]['related']:
all_data_uuid[source_uuid]['related'].append(rel_source)
# LATER find the opposite word of "rel_type" and build the relation in the opposite direction
# dump all_data to their respective file
for t in types:
fname = os.path.join(misp_dir, 'clusters', 'mitre-{}.json'.format(t))
if not os.path.exists(fname):
exit("File {} does not exist, this is unexpected.".format(fname))
with open(fname) as f:
file_data = json.load(f)
file_data['values'] = []
for item in all_data_uuid.values():
# print(json.dumps(item, sort_keys=True, indent=2))
if 'type' not in item or item['type'] != t: # drop old data or not from the right type
continue
item_2 = item.copy()
item_2.pop('type', None)
file_data['values'].append(item_2)
file_data['values'] = sorted(file_data['values'], key=lambda x: sorted(x['value'])) # FIXME the sort algo needs to be further improved
file_data['version'] += 1
with open(fname, 'w') as f:
json.dump(file_data, f, indent=2, sort_keys=True, ensure_ascii=False)
f.write('\n') # only needed for the beauty and to be compliant with jq_all_the_things
print("All done, please don't forget to ./validate_all.sh and ./jq_all_the_things.sh")