
Melicertes
Cerebrate

Threat Sharing

Team CIRCL

EC TheHive Training



Current state and identified issues with the
tooling

Melicertes’s current implementation relies on
re-implementations of exchange protocols
Massive overhead
Misalignments with the intents of the underlying tools
Di�cult to extend with new tools as each new tool would
mean a new reimplementation
Trust circle management is complex and awkward
Tool is complex for complexity’s sake

1 11



The goal is a full revamping of the management
tooling of Melicertes

New tool to manage Melicertes functionalities: Cerebrate
Sync Platform

2 11



Goals

Handle trust group management (based on the MISP sharing
group system)
Handle user and key management for the whole set of
Melicertes tooling
Basic orchestration of the Melicertes platform tools

3 11



Goals

Reusing and adapting elements from the MISP code-base
and paradigms shared by both tools
I Authentication
I ACL
I User + role management
I API handling
I Organisation and trust circle management

Reduce the replication of tasks with the various Melicertes
tools, rely on native communication channels and
instrument the tools via their respective APIs
Modular, extensible design for supported tools

4 11



Cerebrate functionalities

Internal functionalities (orchestrate my tools, manage my
users, contacts)
External functionalities (Interconnect tools with other orgs,
advertise public/trusted information)

5 11



Internal functionalities

Manage users
Manage signing keys
Maintain organisation information
Manage trust circles/sharing groups
Instrument Melicertes tools

6 11



External functionalities (ACL governed, from
public to trust circle)

Organisation registry
User registry
signing key registry
Request access / inbox system

7 11



Design principles

As much code reuse as possible (via MISP 3 core)
I Reduce development time
I Assure inherent improvements by upgrades implemented
downstream from MISP

Reliance on built-in APIs, hands-o� aproach
I Do not try to replicate whatś already there
I Dont́ open ourselves up to risks from misunderstanding an
implementation / building incorrect implementations

8 11



Design principles continued

Modular design
I Interactions with other tools should happen in modules and
not in the core logic of the application

I Similar to misp export/modules system
I Built in cerebrate core, allow for implementations in other
languages (see MISP STIX export as a design example)

Tool agnostic design
I Allow for modules that add new or replace existing tools for
given purposes (e.g: I want to use the Hive instead of RT)

9 11



Design principles continued

Build the tool with a generic use-case in mind
I Organisation/User/Sharing groups outside of the CSIRT
network should �nd the tool just as useful

I Other communities should be able to �nd just as much value
in the tool as the CSIRT network

I Bridging communities should be an option
Con�guration and updating should be simpli�ed and no 3rd
party should be involved other than granting access to a
network

10 11



Design principles continued

User/organisation/trust circle exchange where applicable
Forwarded authentication method (when possible)
Instrumentation for org org exchange (MISP sync setup, Jitsi
call initiation, etc)
Instrumentation for intra-tool exchange (Con�gure RT MISP
link, Viper MISP, etc)
Optional statistics / diagnostics APIs / representation in
cerebrate

11 / 11


