Melicertes

Cerebrate

Team CIRCL

EC TheHive Training M Isp

Threat Sharing




CURRENT STATE AND IDENTIFIED ISSUES WITH THE

TOOLING

Melicertes’s current implementation relies on
re-implementations of exchange protocols

Massive overhead
Misalignments with the intents of the underlying tools

Difficult to extend with new tools as each new tool would
mean a new reimplementation

Trust circle management is complex and awkward

Tool is complex for complexity’s sake



THE GOAL IS A FULL REVAMPING OF THE MANAGEMENT

TOOLING OF MELICERTES

m New tool to manage Melicertes functionalities: Cerebrate
Sync Platform




GOALS

m Handle trust group management (based on the MISP sharing
group system)

m Handle user and key management for the whole set of
Melicertes tooling

m Basic orchestration of the Melicertes platform tools




GOALS

m Reusing and adapting elements from the MISP code-base
and paradigms shared by both tools

Authentication

ACL

User + role management

API handling

Organisation and trust circle management

m Reduce the replication of tasks with the various Melicertes
tools, rely on native communication channels and
instrument the tools via their respective APIs

VVYyVYVYY

m Modular, extensible design for supported tools



CEREBRATE FUNCTIONALITIES

m Internal functionalities (orchestrate my tools, manage my
users, contacts)

m External functionalities (Interconnect tools with other orgs,
advertise public/trusted information)




INTERNAL FUNCTIONALITIES

Manage users
Manage signing keys

Manage trust circles/sharing groups
Instrument Melicertes tools

|
|
m Maintain organisation information
|
|




EXTERNAL FUNCTIONALITIES (ACL GOVERNED, FROM

PUBLIC TO TRUST CIRCLE)

m Organisation registry

m User registry

m signing key registry

B Request access / inbox system




DESIGN PRINCIPLES

m As much code reuse as possible (via MISP 3 core)
» Reduce development time
» Assure inherent improvements by upgrades implemented
downstream from MISP
m Reliance on built-in APIs, hands-off aproach
» Do not try to replicate whats already there
» Dont open ourselves up to risks from misunderstanding an
implementation / building incorrect implementations




DESIGN PRINCIPLES CONTINUED

m Modular design

» |Interactions with other tools should happen in modules and
not in the core logic of the application

» Similar to misp export/modules system

» Built in cerebrate core, allow for implementations in other
languages (see MISP STIX export as a design example)

m Tool agnostic design

» Allow for modules that add new or replace existing tools for
given purposes (e.g: | want to use the Hive instead of RT)




DESIGN PRINCIPLES CONTINUED

m Build the tool with a generic use-case in mind
» Organisation/User/Sharing groups outside of the CSIRT
network should find the tool just as useful
» Other communities should be able to find just as much value
in the tool as the CSIRT network
» Bridging communities should be an option

m Configuration and updating should be simplified and no 3rd
party should be involved other than granting access to a
network




DESIGN PRINCIPLES CONTINUED

m User/organisation/trust circle exchange where applicable
m Forwarded authentication method (when possible)

m Instrumentation for org org exchange (MISP sync setup, Jitsi
call initiation, etc)

m Instrumentation for intra-tool exchange (Configure RT MISP
link, Viper MISP, etc)

m Optional statistics / diagnostics APIs / representation in
cerebrate

11/ 1



