Turning data into actionable intelligence

advanced features in MISP supporting your analysts and tools

CIRCL / Team MISP Project

CIISI-FU

ABOUT CIRCL

■ The Computer Incident Response Center Luxembourg (CIRCL) is a government-driven initiative designed to provide a systematic response facility to computer security threats and incidents. CIRCL is the CERT for the private sector, communes and non-governmental entities in Luxembourg and is operated by securitymadein.lu g.i.e.

MISP AND CIRCL

- CIRCL is mandated by the Ministry of Economy and acting as the Luxembourg National CERT for private sector.
- CIRCL leads the development of the Open Source MISP threat intelligence platform which is used by many military or intelligence communities, private companies, financial sector, National CERTs and LEAs globally.
- CIRCL runs multiple large MISP communities performing active daily threat-intelligence sharing.

THE AIM OF THIS PRESENTATION

- To give some insight into what sort of an evolution of our various communities' have gone through as observed over the past 8 years
- Show the importance of **strong contextualisation**...
- ...and how that can be leveraged when trying to make our data actionable

DEVELOPMENT BASED ON PRACTICAL USER FEEDBACK

- There are many different types of users of an information sharing platform like MISP:
 - Malware reversers willing to share indicators of analysis with respective colleagues.
 - Security analysts searching, validating and using indicators in operational security.
 - Intelligence analysts gathering information about specific adversary groups.
 - Law-enforcement relying on indicators to support or bootstrap their DFIR cases.
 - Risk analysis teams willing to know about the new threats, likelyhood and occurences.
 - **Fraud analysts** willing to share financial indicators to detect financial frauds.

THE INITIAL SCOPE OF MISP

- Extract information during the analysis process
- Store and correlate these datapoints
- Share the data with partners
- Focus on technical indicators: IP, domain, hostname, hashes, filename, pattern in file/memory/traffic
- Generate protective signatures out of the data: snort, suricata, OpenIOC

INITIAL WORKFLOW

Raw data

Signatures

WHY WAS IT SO SIMPLISTIC?

- This was both a reflection of our maturity as a community
 - Capabilities for extracting information
 - Capabilities for utilising the information
 - Lack of willingness to share context
 - Lack of co-operation between teams doing technical analysis/monitoring and threat-intel
- The more growth we saw in maturity, the more we tried to match it with our data-model, often against pushback

THE GROWING NEED TO CONTEXTUALISE DATA

- There were separate factors that made our data-sets less and less useful for detection/defense in general
 - Growth of our communities
 - Distinguish between information of interest and raw data
 - ► False-positive management
 - TTPs and aggregate information may be prevalent compared to raw data (risk assessment)
 - Increased data volumes leads to be able to prioritise

OUR INITIAL SOLUTION

- Allow users to tag any information created in MISP
- We wanted to be lax with what we accept in terms of data, but be strict on what we fed to our tools, with strong filter options
- We had some ideas on how to potentially move forward...

OUR INITIAL FAILURES

- Try to capture different aspects of contextualisation into normalised values (threat level, source reliability, etc)
 - Didn't scale with needs other than our own
 - Incorporating new types of contextualisation would mean the modification of the software
 - Getting communities with established naming conventions to use anything but their go-to vocabularies was a pipe-dream
 - Heated arguments over numeric conversions

HUMAN CREATIVITY

- We tried an alternate approach instead: Free tagging
 - Result was spectacularly painful, at least 7 different ways to spell tlp:amber
 - No canonisation for common terms lead to tagging ultimately becoming a highly flawed tool for filtering within a sharing community

HOW WE ENDED UP TACKLING THE ISSUE MORE SUCCESSFULY

- We ended up with a mixed approach, currently implemented by the MISP-taxonomy system
 - Taxonomies are **vocabularies** of known tags
 - Tags would be in a triple tag format namespace:predicate="value"
 - Create your own taxonomies, recipients should be able to use data you tag with them without knowing it at the first place
 - Avoid any coding, stick to JSON
- Massive success, approaching 100 taxonomies
- Organisations can solve their own issues without having to rely on us

☐ Tag	Events	Attributes	Tags
workflow:state="complete"	11	0	workflow:state="complete"
workflow:state="draft"	0	0	workflow:state="draft"
workflow:state="incomplete"	55	10	workflow:state="incomplete"
workflow:state="ongoing"	0	0	workflow:state="ongoing" <

WE WERE STILL MISSING SOMETHING...

- Taxonomy tags often **non self-explanatory**
- Example: universal understanding of tlp:green vs APT 28
- For the latter, a single string was ill-suited
- So we needed something new in addition to taxonomies -Galaxies
 - Community driven knowledge-base libraries used as tags
 - Including descriptions, links, synonyms, meta information, etc.
 - Goal was to keep it simple and make it reusable
 - Internally it works the exact same way as taxonomies (stick to ISON)

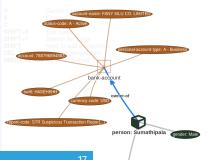
BROADENING THE SCOPE OF WHAT SORT OF CONTEXT WE ARE INTERESTED IN

- Who can receive our data? What can they do with it?
- Data accuracy, source reliability
- Why is this data relevant to us?
- Who do we think is behind it, what tools were used?
- What sort of motivations are we dealing with? Who are the targets?
- How can we **block/detect/remediate** the attack?
- What sort of **impact** are we dealing with?

PARALLEL TO THE CONTEXTUALISATION EFFORTS: FALSE POSITIVE HANDLING

- Low quality / false positive prone information being shared
- Lead to alert-fatigue
- Exclude organisation xy out of the community?
- False positives are often obvious can be encoded
- Warninglist system¹ aims to do that
- Lists of well-known indicators which are often false-positives like RFC1918 networks, ...

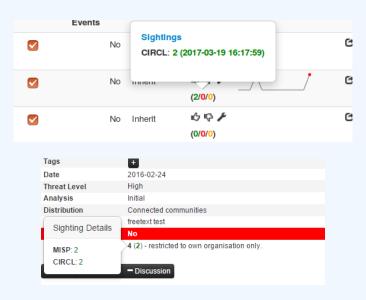
https://github.com/MISP/misp-warninglists


More complex data-structures for a modern age

- Atomic attributes were a great starting point, but lacking in many aspects
- MISP objects² system
 - Simple templating approach
 - Use templating to build more complex structures
 - Decouple it from the core, allow users to define their own structures
 - MISP should understand the data without knowing the templates
 - Massive caveat: Building blocks have to be MISP attribute types
 - Allow relationships to be built between objects

²https://github.com/MISP/misp-objects

SUPPORTING SPECIFIC DATAMODEL


+		⊞ 9 ≍	Filters:	All File Network Fina	cial Proposal	Correlation Warning	gs Include deleted attributes	Show context fields	Q	
	Date Org	Category	Туре	Value		Tags	Garaxies	Comment	Correlate	Related Events
		Name: bank-acco References: 0 🖸								
	2018-09-28	Other	status-code: text	A - Active			Add			
	2018-09-28	Other	report-code: text	STR Suspicious Transa	ction Report		Add			
	2018-09-28	Other	personal-account-type text	E A - Business			Add			
	2018-09-28	Financial fraud	swift: bic	HASEHKHH		•	Add			3849 11320 11584
	2018-09-28	Financial fraud	account: bank-account-nr	788796894883			Add			
	2018-09-28	Other	account-name: text	FANY SILU CO. LIMITI	D		Add			
	2018-09-28	Other	currency-code: text	USD			Add			

CONTINUOUS FEEDBACK LOOP

- Data ingested by MISP was in a sense frozen in time
- We had a creation data, but lacked a way to use the output of our detection
- Lead to the introduction of the Sighting system
- The community could sight indicators and convey the time of sighting
- Potentially powerful tool for IoC lifecycle management, clumsy query implementation default

SUPPORTING SPECIFIC DATAMODEL

MAKING USE OF ALL THIS CONTEXT

- Most obvious goal: Improve the way we query data
 - ► Unified all export APIs
 - Incorporate all contextualisation options into API filters
 - Allow for an on-demand way of excluding potential false positives
 - Allow users to easily build their own export modules feed their various tools

EXAMPLE QUERY

```
/attributes/restSearch
    "returnFormat": "netfilter",
    "enforceWarninglist": 1,
    "tags": {
      "NOT": [
        "tlp:white",
        "type: OSINT"
      "OR": [
        "misp-galaxy:threat-actor=\"Sofacy\"",
        "misp-galaxy:sector=\"Chemical\""
```

SYNCHRONISATION FILTERS

- Make decisions on whom to share data with based on context
 - MISP by default decides based on the information creator's decision who data gets shared with
 - Community hosts should be able to act as a safety net for sharing
 - **Push filters** what can I push?
 - Pull filters what am I interested in?
 - Local tags allow for information flow control

THE EMERGENCE OF ATT&CK AND SIMILAR GALAXIES

- Standardising on high-level TTPs was a solution to a long list of issues
- Adoption was rapid, tools producing ATT&CK data, familiar interface for users
- A much better take on kill-chain phases in general
- Feeds into our filtering and situational awareness needs extremely well
- Gave rise to other, ATT&CK-like systems tackling other concerns
 - attck4fraud ³ by Francesco Bigarella from ING
 - **Election guidelines** 4 by NIS Cooperation Group


³https://www.misp-project.org/galaxy.html#_attck4fraud 4https:

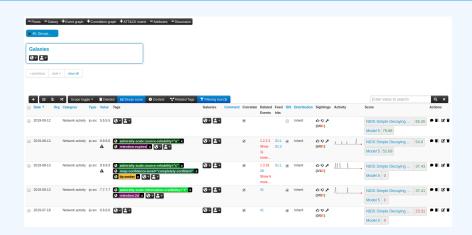
^{//}www.misp-project.org/galaxy.html#_election_guidelines

EXAMPLE QUERY TO GENERATE ATT&CK HEATMAPS

```
/events/restSearch
{
    "returnFormat": "attack",
    "tags": [
        "misp-galaxy:sector=\"Chemical\""
    ],
    "timestamp": "365d"
}
```

A SAMPLE RESULT FOR THE ABOVE QUERY

MONITOR TRENDS OUTSIDE OF MISP (EXAMPLE: DASHBOARD)

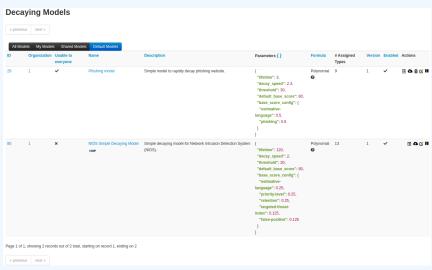

DECAYING OF INDICATORS

- We were still missing a way to use all of these systems in combination to decay indicators
- Move the decision making from complex filter options to complex decay models
- Decay models would take into account various taxonomies, sightings, the type of each indicator Sightings and Creation date
- The first iteration of what we have in MISP now took:
 - 2 years of research
 - 3 published research papers
 - A lot of prototyping

Scoring Indicators: Our solution

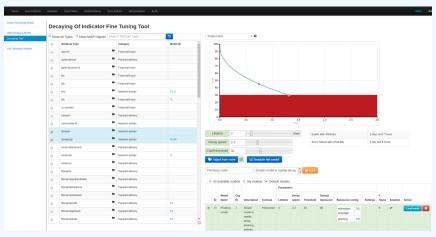
- score ∈ [0, 100]
- base $score \in [0, 100]$
- decay is a function defined by model's parameters controlling decay speed
- Attribute Contains Attribute's values and metadata (Taxonomies, Galaxies, ...)
- Model Contains the Model's configuration

IMPLEMENTATION IN MISP: Event/view



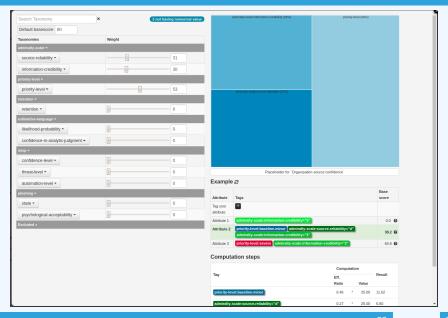
- Decay score toggle button
 - ▶ Shows Score for each Models associated to the Attribute type

IMPLEMENTATION IN MISP: API RESULT


```
/attributes/restSearch
"Attribute": [
    "category": "Network activity",
    "type": "ip-src",
    "to ids": true.
    "timestamp": "1565703507",
    [...]
    "value": "8.8.8.8",
    "decay_score": [
        "score": 54.475223849544456,
        "decayed": false,
        "DecayingModel": {
          "id": "85".
          "name": "NIDS Simple Decaying Model"
```

IMPLEMENTATION IN MISP: INDEX

View, update, add, create, delete, enable, export, import


IMPLEMENTATION IN MISP: FINE TUNING TOOL

Create, modify, visualise, perform mapping

2

Implementation in MISP: base_score tool

IMPLEMENTATION IN MISP: SIMULATION TOOL

Simulate Attributes with different Models

IMPLEMENTATION IN MISP: API QUERY BODY

```
/attributes/restSearch
    "includeDecayScore": 1,
    "includeFullModel": o,
    "excludeDecayed": o,
    "decayingModel": [85],
    "modelOverrides": {
        "threshold": 30
    "score": 30.
```

TO SUM IT ALL UP...

- Massive rise in user capabilities
- Growing need for truly actionable threat intel
- Lessons learned:
 - Context is king Enables better decision making
 - ► Intelligence and situational awareness are natural by-products of context
 - Don't lock users into your workflows, build tools that enable theirs

GET IN TOUCH IF YOU HAVE ANY QUESTIONS

- Contact us
 - https://twitter.com/mokaddem_sami
 - ▶ https://twitter.com/iglocska
- Contact CIRCL
 - ► info@circl.lu
 - https://twitter.com/circl_lu
 - ► https://www.circl.lu/
- Contact MISPProject
 - ► https://github.com/MISP
 - https://gitter.im/MISP/MISP
 - https://twitter.com/MISPProject