
An Introduction to Workflows in
MISP
MISP - Threat Sharing

Threat Sharing

CIRCL / Team MISP Project

MISP Project
https://www.misp-project.org/

13th ENISA-EC3 Workshop

https://www.misp-project.org/

Content of the presentation

MISP Workflows fundamentals
Getting started
Design of the system & how it can be extended

1 30

What problems are we trying to tackle

Initial idea came during GeekWeek7.51

Needs:
▶ Prevent default MISP behaviors
▶ Hook specific actions to run callbacks

Use-cases:
▶ Prevent publication of events not meeting some criterias
▶ Prevent querying thrid-party services (e.g. virustotal) with

sensitive information
▶ Send notifications in a chat rooms
▶ And much much more..

1Workshop organized by the Canadian Cyber Center
2 30

https://cyber.gc.ca/en/events/geekweek-75

Workflow - Fundamentals

Simplistic overview of a Workflow in action

1. An action happens in MISP
2. If there is an enabled Workflow for that action, run it
3. If all went fine, MISP continue to perform the action

▶ The operation can potentially be cancelled by blocking
modules

3 30

Terminology

workflow: Sequence of all operations (nodes) to be
executed. Basically the whole graph.
execution path: A path composed of nodes
trigger: Starting point of a workflow. Triggers are called
when specific actions happen in MISP
▶ A trigger can only have one workflow and vice-versa

4 30

Workflow execution process

Typical execution process:
1. An action happens in MISP
2. The workflow associated to the trigger is ran
3. Execution result?

▶ success: Continue the action
▶ failure | blocked: Cancel the action

Example for Event publish:
1. An Event is about to be published
2. MISP executes the workflow listening to the

event-publish trigger
▶ success: Continue the publishing action
▶ failure | blocked: Stop publishing and log the reason

5 30

Blocking and non-blocking Workflows

Currently 2 types of workflows:

Blocking: Completion of the action can be prevented
▶ If a blocking module blocks the action
▶ If a blocking module raises an exception

Non-blocking: Workflow execution outcome has no impact
▶ Blocking modules can still stop the execution

6 30

Execution context

Workflows can be triggered by any users
Workflows can be triggered by actions done via the UI or API
However, the user for which the workflow executes has:
▶ The site-admin permission
▶ Is from the MISP.host_org_id

Ensures data is processed regardless of ownership and
access: no ACL

7 30

Classes of Workflow modules

3 classes of modules
action: Allow to executes functions, callbacks or scripts
▶ Can stop execution
▶ e.g. Webhook, block the execution, perform enrichments, ...

logic: Allow to redirect the execution flow.
▶ IF condition, fork the blocking execution into a non-blocking

one, ...
blueprint: Allow to reuse composition of modules
▶ Can save subworkflows and its module’s configuration

8 30

Sources of Workflow modules

3 sources of action modules
Built-in default modules
▶ Part of the MISP codebase
▶ app/Model/WorkflowModules/action/[module_name].php

User-defined custom modules
▶ Written in PHP
▶ Can extend existing default modules
▶ Can use MISP’s built-in functionalities (restsearch,

enrichment, push to zmq, ...)
▶ Faster and easier to implement new complex behaviors
▶ app/Lib/WorkflowModules/action/[module_name].php

9 30

Sources of Workflow modules

3 sources of action modules
Modules from the enrichment service
▶ Default and custom modules
▶ From the misp-module
▶ Written in Python
▶ Can use any python libraries
▶ New misp-module module type: action

→ Both the PHP and Python systems are plug-and-play

10 30

Triggers currently available

Currently 8 triggers can be hooked. 3 being blocking.

11 30

Workflow - Getting started

Getting started with workflows (1)

Review MISP settings:
1. Make sure MISP.background_jobs is turned on
2. Make sure workers are up-and-running and healthy
3. Turn the setting Plugin.Workflow_enable on

4. [optional:misp-module] Turn the setting
Plugin.Action_services_enable on

12 30

Getting started with workflows (2)

If you wish to use action modules from misp-module, make
sure to have:

The latest update of misp-module
▶ There should be an action_mod module type in

misp-modules/misp_modules/modules
Restarted your misp-module application

1 # This command should show a l l ‘ action ‘ modules
2 $ c u r l −s http : / / 1 2 7 . 0 . 0 . 1 : 6 6 6 6 / modules | \
3 jq ’ . [] | se lec t (. meta . " module− type " [] | contains (" act ion ")) |
4 {name : . name , version : . meta . version } ’

13 30

misp-modules/misp_modules/modules

Getting started with workflows (3)

1. Go to the list of modules
▶ Administration > Workflows > List Modules
▶ or /workflows/moduleIndex

2. Make sure default modules are loaded
3. [optional:misp-module] Make sure misp-module modules

are loaded

14 30

/workflows/moduleIndex

Creating a workflow with the editor

1. Go to the list of triggers Administration > Workflows
2. Enable and edit a trigger from the list
3. Drag an action module from the side panel to the canvas
4. From the trigger output, drag an arrow into the action’s

input (left side)
5. Execute the action that would run the trigger and observe

the effect!

15 30

Working with the editor

Operations not allowed:
Execution loop are not authorized
▶ Current caveat: If an action re-run the workflow in any way

16 30

Working with the editor

Operations not allowed:
Multiple connections from the same output
▶ Execution order not guaranted and confusing for users

17 30

Working with the editor

Operations showing a warning:
Blocking modules after a concurrent tasks module
Blocking modules in a non-blocking workflow

18 30

Workflow blueprints

1. Blueprints allow to re-use parts of a workflow in another one
2. Blueprints can be saved, exported and shared

Blueprints origins:
1. From the "official" misp-workflow-blueprints

repository
2. Created or imported by users

19 30

Workflow blueprints: Create

Select one or more modules to be saved as blueprint then click
on the save blueprint button

20 30

Hash path filtering

Some modules have the possibility to filter or check
conditions using CakePHP’s path expression.

1 $path_expression = ’ { n } [name= fred] . id ’ ;
2 $users = [
3 { ’ id ’ : 123 , ’name ’ : ’ f red ’ , ’ surname ’ : ’ bloggs ’ } ,
4 { ’ id ’ : 245 , ’name ’ : ’ f red ’ , ’ surname ’ : ’ smith ’ } ,
5 { ’ id ’ : 356 , ’name ’ : ’ joe ’ , ’ surname ’ : ’ smith ’ } ,
6] ;
7 $ids = Hash : : ex t rac t ($users , $path_expression) ;
8 // => $ids will be [123, 245]

21 30

Module filtering

Some action modules accept filtering conditions
E.g. the enrich-event module will only perform the
enrichment on Attributes having a tlp:white Tag

22 30

Data format in Workflows

All triggers will inject data in a workflow
In some cases, there is no format (e.g. User after-save)
In others, the format is compliant with the MISP Core format
In addition to the RFC, the passed data has additional
properties
▶ Attributes are always encapsulated in the Event or Object
▶ Additional key _AttributeFlattened
▶ Additional key _allTags
▶ Additional key inherited for Tags

23 30

Logic module: Concurrent Task

Special type of logic module allowing multiple connections
Allows breaking the execution flow into a concurrent tasks
to be executed later on by a background worker
As a side effect, blocking modules cannot cancel ongoing
operations

24 30

Debugging Workflows: Log Entries

Workflow execution is logged in the application logs:
▶ /admin/logs/index

Or stored on disk in the following file:
▶ /app/tmp/logs/workflow-execution.log

Use the webhook-listener.py tool
▶ /app/tools/misp-workflows/webhook-listener.py

25 30

Debugging Workflows: Debug mode

The can be turned on for each workflows
Each nodes will send data to the provided URL
▶ Configure the setting: Plugin.Workflow_debug_url

Result can be visualized in
▶ offline: tools/misp-workflows/webhook-listener.py
▶ online: requestbin.com or similar websites

26 30

requestbin.com

Learning by examples

Workflow example 1

1. The Event-Publish trigger uses the MISP core format
2. The IF::Tag module checks if at least one of the Attribute

has the tlp:white tag
3. If it does, the Push-to-ZMQ module will be executed

27 30

Workflow example 2

If an event has the tlp:red tag or any of the attribute has
it, the publish process will be cancelled

28 30

Extending the system

Creating a new module in PHP

app/Lib/WorkflowModules/action/[module_name].php
Module configuration are defined as public variables
The exec function has to be implemented.
▶ If it returns true, execution will proceed
▶ If it returns false

And the module is blocking, the execution will stop and the
operation will be blocked

29 30

Creating a new module in Python

Module configuration are defined in the moduleinfo and
moduleconfig variables
The handler function has to be implemented.
Blocking logic is the same as other modules

30 / 30

	Workflow - Fundamentals
	Workflow - Getting started
	Learning by examples
	Extending the system

