
MISP core development crash
course
How I learned to stopworrying and love the PHP

Threat Sharing

CIRCL / Team MISP Project

NSPA



Some things to know in advance...

MISP is based on PHP 7.3+
Using the MVC framework CakePHP 2.x
What we’ll look at now will be a quick glance at the
structuring / layout of the code

1 18



MVC frameworks in general

separation of business logic and views, interconnected by
controllers
main advantage is clear separation of the various
components
lean controllers, fat models (kinda...)
domain based code reuse
No interaction between Model and Views, ever

2 18



Structure of MISP Core app directories

Config: general configuration files
Console: command line tools
Controller: Code dealing with requests/responses,
generating data for views based on interactions with the
models
Lib: Generic reusable code / libraries
Model: Business logic, data gathering and modification
Plugin: Alternative location for plugin specific codes,
ordered into controller, model, view files
View: UI views, populated by the controller

3 18



Controllers - scope

Each public function in a controller is exposed as an API
action
request routing (admin routing)
multi-use functions (POST/GET)
request/response objects
contains the action code, telling the application what data
fetching/modifying calls to make, preparing the resulting
data for the resulting view
grouped into controller files based on model actions
Accessed via UI, API, AJAX calls directly by users
For code reuse: behaviours
Each controller bound to a model

4 18



Controllers - functionalities of controllers

pagination functionality
logging functionality
Controllers actions can access functionality / variables of
Models
Controllers cannot access code of other controller actions
(kind of...)
Access to the authenticated user’s data
beforeFilter(), afterFilter() methods
Inherited code in AppController

5 18



Controllers - components

Components = reusable code for Controllers
I Authentication components
I RestResponse component
I ACL component
I Cidr component
I IOCImport component (should be moved)

6 18



Controllers - additional functionalities

Handling API responses (RestResponseComponent)
Handling API requests (IndexFilterComponent)
auth/session management
ACL management
CRUD Component
Security component
important: quertString/PyMISP versions, MISP version
handler
future improvements to the export mechanisms

7 18



Models - scope

Controls anything that has to do with:
I finding subsets of data
I altering existing data
I inherited model: AppModel
I reusable code for models: Behaviours
I regex, trim

8 18



Models - hooking system

Versatile hooking system
I manipulate the data at certain stages of execution
I code can be located in 3 places: Model hook, AppModel hook,

behaviour

9 18



Model - hooking pipeline (add/edit)

Hooks / model pipeline for data creation / edits
I beforeValidate() (lowercase all hashes)
I validate() (check hash format)
I afterValidate() (we never use it
I could be interesting if we ever validated without saving)
I beforeSave() (purge existing correlations for an attribute)
I afterSave() (create new correlations for an attribute / zmq)

10 18



Models - hooking pipeline (delete/read)

Hooks for deletions
I beforeDelete() (purge correlations for an attribute)
I afterDelete() (zmq)

Hooks for retrieving data
I beforeFind() (modify the find parameters before execution,

we don’t use it)
I afterFind() (json decode json fields)

11 18



Models - misc

code to handle version upgrades contained in AppModel
generic cleanup/data migration tools
centralised redis/pubsub handlers
(Show example of adding an attribute with trace)

12 18



Views - scope and structure

templates for views
layouts
reusable template code: elements
I attribute list, rows (if reused)

reusable code: helpers
I commandhelper (for discussion boards), highlighter for

searches, tag colour helper
views per controller

13 18



Views - Types of views and helpers

ajax views vs normal views
data views vs normal views vs serialisation in the controller
sanitisation h()
creating forms
I sanitisation
I CSRF

14 18



Views - Generators

Mostly in genericElements
Preparing the move to Cake4
Important ones
I Form - generate forms in a standardised way (/add, /edit, etc)
I IndexTable - index lists using Field templates (/index, etc)
I SingleViews - key-value lists with child elements (/view, etc)
I Menues - to be refactored, see Cerebrate

15 18



General reusable libraries

Located in app/Lib
Code that is to be reused across several layers
Important ones
I Dashboard - Dashboard widget backend code
I EventReport - Report generation
I Export - MISP -> external format converter modules
I Tools - List of generic helper libraries - examples:

Attachment, JSON conversion, random generation, emailing,
sync request generation
Kafka, ZMQ, AWS S3, Elastic integration, PGP encryption, CIDR
operations

16 18



Distribution

algorithm for checking if a user has access to an attribute
creator vs owner organisation
distribution levels and inheritance (events -> objects ->
attributes)
shorthand inherit level
sharing groups (org list, instance list)
correlation distribution
algorithms for safe data fetching (fetchEvents(),
fetchAttributes(),...)

17 18



Testing your code

funtional testing
Github actions
impact scope
I view code changes: only impacts request type based views
I controller code changes: Should only a�ect given action
I model code changes: can have impact on entire application
I lib changes: can have a�ect on the entire application

Don’t forget: queryACL, change querystring

18 / 18


