
Deep-dive into PyMISP
MISP - Threat Sharing

Threat Sharing

CIRCL / Team MISP Project

http://www.misp-project.org/
Twitter: @MISPProject

NSPA

http://www.misp-project.org/
https://twitter.com/mispproject

Context

MISP is a large project
Your production environment is even more complex
3rd party services are even worse
Querying MISP via CURL is doable, but get’s painful fast
Talking to MySQL directly can be dangerous
POST a JSON blob, receive a JSON blob. You can do it
manually(-ish)

1 21

Big picture

Core goal: providing stable access to APIs, respect access
control
Simplifying handling & automation of indicators in 3rd party
tools
Hiding complexity of the JSON blobs
Providing pre-cooked examples for commonly used
operations
Helping integration with existing infrastructure

2 21

Common queries: Recent changes on a timeframe

There are 4 main cases here:
Metadata of the events that have been modified
I search_index⇒ timestamp (1h, 1d, 7d, ...), returns list of all

the modified events
Full events (metadata + attributes)
I search⇒ timestamp (1h, 1d, 7d, ...)

Modified attributes
I search⇒ controller = attributes and timestamp (1h, 1d, 7d, ...)

Other use case: get last published events by using the last
parameter in the search method.

3 21

Common queries: Search things

There are 3 main cases here:
Easy, but slow: full text search with search_all
Faster: use the search method and search by tag, type,
enforce the warning lists, with(-out) attachments, dates
interval, ...
Get malware samples (if available on the instance).

4 21

Common queries: create things

There are 3 main cases here:
Add Event, edit its metadata
Add attributes or objects to event
(un)Tag event or attribute (soon object)
Edit Attributes medatada
Upload malware sample (and automatically expand it)

5 21

Administrative tasks

Assyming you have the right to do it on the instance.
Managing users
Managing organisations
Managing sync servers

6 21

Other Capabilities

Upload/download samples
Proposals: add, edit, accept, discard
Sightings: Get, set, update
Export statistics
Manage feeds
Get MISP server version, recommended PyMISP version
And more, look at the api file

7 21

MISPEvent - Usecase

from pymisp import MISPEvent , EncodeUpdate

Create a new event with defaul t values
event = MISPEvent ()

Load an ex i s t i ng JSON dump (opt ional)
event . l o a d _ f i l e (’ Path/to/event . json ’)
event . in fo = ’My cool event ’ # Duh .

Add an a t t r i bu t e of type ip−dst
event . add_attr ibute (’ ip−dst ’ , ’ 8 . 8 . 8 . 8 ’)

Mark an a t t r i bu t e as deleted (From 2 . 4 . 6 0)
event . de le te_at t r ibute (’ < A t t r i b u t e UUID> ’)

Dump as json
event_as_jsondump = json . dumps(event , c l s =EncodeUpdate)

8 21

Basics

Python 3.5+ is recommended
PyMISP is always inline with current version (pip3 install
pymisp)
Dev version: pip3 install
git+https://github.com/MISP/PyMISP.git
Get your auth key from:
https://misppriv.circl.lu/events/automation
I Not available: you don’t have "Auth key access" role. Contact

your instance admin.
Source available here: git clone
https://github.com/MISP/PyMISP.git

9 21

https://misppriv.circl.lu/events/automation
https://github.com/MISP/PyMISP.git

Examples

PyMISP needs to be installed (duh)
Usage:
I Create examples/keys.py with the following content

misp_url = " https :// url−to−your−misp "
misp_key = " <API_KEY > "
misp_ver i fycer t = True

Proxy support:
proxies = {

’ http ’ : ’ http : / / 1 2 7 . 0 . 0 . 1 : 8 1 2 3 ’ ,
’ https ’ : ’ http : / / 1 2 7 . 0 . 0 . 1 : 8 1 2 3 ’ ,

}
PyMISP (misp_url , misp_key , misp_ver i fycert , proxies = proxies)

10 21

Examples

Lots of ideas on how to use the API
You may also want to look at the tests directory
All the examples use argparse. Help usage is available:
script.py -h
I add_file_object.py: Attach a file (PE/ELF/Mach-O) object to

an event
I upload.py: Upload a malware sample (use advanced

expansion is available on the server)
I last.py: Returns all the most recent events (on a timeframe)
I add_named_attribute.py: Add attribute to an event
I sighting.py: Update sightings on an attribute
I stats.py: Returns the stats of a MISP instance
I {add,edit,create}_user.py : Add, Edit, Create a user on MISP

11 21

Usage

Basic example
from pymisp import PyMISP
api = PyMISP (url , apikey , v e r i f y c e r t =True , debug= False , proxies =None)
response = api . < function >
i f response [’ er ror ’] :

<something went wrong>
else :

<do something with the output >

12 21

Concept behind AbstractMISP

JSON blobs are python dictionaries
... Accessing content can be a pain
AbstractMISP inherits collections.MutableMapping, they are
all dictionaries!
... Has helpers to load, dump, and edit JSON blobs
Important: All the public attributes (not starting with a _)
defined in a class are dumped to JSON
Tags: Events and Attributes have tags, soon Objects. Tag
handling is defined in this class.
edited: When pushing a full MISPEvent, only the objects
without a timestamp, or with a newer timestamp will be
updated. This method recursively finds updated events, and
removes the timestamp key from the object.

13 21

MISPEvent, MISPAttribute, MISPObject,
MISPSighting...

Pythonic representation of MISP elements
Easy manipulation
I Load an existing event
I Update te metadata, add attributes, objects, tags, mark an

attribute as deleted, ...
I Set relations between objects
I Load and add attachments or malware samples as pseudo

files
Dump to JSON

14 21

MISPEvent - Main entrypoints

load_file(event_path)
load(json_event)
add_attribute(type, value, **kwargs)
add_object(obj=None, **kwargs)
add_attribute_tag(tag, attribute_identifier)
get_attribute_tag(attribute_identifier)
add_tag(tag=None, **kwargs)
objects[], attributes[], tags[]
edited, all other paramaters of the MISPEvent element (info,
date, ...)
to_json()

15 21

MISPObject - Main entrypoints

add_attribute(object_relation, **value)
add_reference(referenced_uuid, relationship_type,
comment=None, **kwargs)
has_attributes_by_relation(list_of_relations)
get_attributes_by_relation(object_relation)
attributes[], relations[]
edited, all other paramaters of the MISPObject element
(name, comment, ...)
to_json()
Can be validated against their template
Can have default parameters applied to all attributes (i.e.
distribution, category, ...)

16 21

MISPAttribute - Main entrypoints

add_tag(tag=None, **kwargs)
delete()
malware_binary (if relevant)
tags[]
edited, all other paramaters of the MISPObject element
(value, comment, ...)
to_json()

17 21

PyMISP - Tools

Libraries requiring specfic 3rd party dependencies
Callable via PyMISP for specific usecases
Curently implemented:
I OpenIOC to MISP Event
I MISP to Neo4J

18 21

PyMISP - Default objects generators

File - PE/ELF/MachO - Sections
VirusTotal
Generic object generator

19 21

PyMISP - Logging / Debugging

debug=True passed to the constructor enable debug to
stdout
Configurable using the standard logging module
Show everything send to the server and received by the
client

import pymisp
import logging

logger = logging . getLogger (’ pymisp ’)
logger . setLevel (logging . DEBUG) # enable debug to stdout

logging . bas icConf ig (l e v e l = logging . DEBUG , # Enable debug to f i l e
f i lename = "debug . log " ,
filemode = ’w ’ ,
format=pymisp . FORMAT)

20 21

Q&A

https://github.com/MISP/PyMISP
https://github.com/MISP/
https://pymisp.readthedocs.io/
We welcome new functionalities and pull requests.

21 / 21

https://github.com/MISP/PyMISP
https://github.com/MISP/
https://pymisp.readthedocs.io/

