
MISP feeds - A simple and secure
approach to generate, select and
collect intelligence
Providing ready-to-use threat intelligence in
MISP standard format
CIRCL / Team MISP Project
TLP:WHITE

http://www.misp-project.org/
Twitter: @MISPProject

NSPA

http://www.misp-project.org/
https://twitter.com/mispproject

MISP Feed - Basics

MISP Feeds provide a way to
Exchange information via any transports (e.g. HTTP, TLS, USB keys)
Preview events along with their attributes, objects
Select and import events
Correlate attributes using caching

MISP Feeds have the following advantages
Feeds work without the need of MISP synchronisation (reducing
attack surface and complexity to a static directory with the events)
Feeds can be produced without a MISP instance (e.g. security
devices, honeypot sensors)

1 10

Feed - Overview

By default, MISP is bundled with ∼50 default feeds (MISP feeds,
CSV or freetext feeds) which are not enabled by default and
described in a simple JSON file1.
The feeds include CIRCL OSINT feed but also feeds like abuse.ch,
Tor exit nodes or many more 2.

1https://github.com/MISP/MISP/blob/2.4/app/files/feed-metadata/
defaults.json

2http://www.misp-project.org/feeds/
2 10

https://github.com/MISP/MISP/blob/2.4/app/files/feed-metadata/defaults.json
https://github.com/MISP/MISP/blob/2.4/app/files/feed-metadata/defaults.json
http://www.misp-project.org/feeds/

Feed - Operations

Cache feed attributes for correlation (not imported but visible in
MISP)
Disable feed
Explore remote events
Fetch all events (imported in MISP as event)
Edit the feed configuration (e.g. authentication, URL,...)
Remove feed
Download feed metadata (to share feed details)

3 10

Feed - Creation using PyMISP feed generator

feed generator fetches events (matching some filtering) from a
MISP instance and construct the manifest (defined in MISP core format)
needed to export data.

Particularly,
Used to generate the CIRCL OSINT feed
Export events as json based on tags, organisation, events, ...
Automatically update the dumps and the metadata file
Comparable to a lighweight TAXII interface

4 10

Feed generator - configuration file

1 url = ’your/misp/url’
2 key = ’YourAPIKey’
3 ssl = True
4 outputdir = ’output_directory’
5

6 filters = {
7 ’tag’:’tlp:white|feed-export|!privint’,
8 ’org’:’CIRCL’
9 }

10 # the above would generate a feed for all events created by CIRCL,
tagged tlp:white and/or feed-export but exclude anything
tagged privint

11

12 valid_attribute_distribution_levels = [’0’, ’1’, ’2’, ’3’, ’4’, ’5
’]

13 # 0: Your Organisation Only
14 # 4: Sharing Group
15 # 5: Inherit Event
16

5 10

Real-time Feed generator - Purpose

The PyMISP feed generator is great but may be inadequate or
ineficient:

Batch import of attributes/objects
Data producer doesn’t have a MISP instance at hand and only
wants to produce a directly consumable feed:

Honeypot MISP

ip-src
payload-delivery
url
malware
...

6 10

Real-time Feed generator - Usage

generator.py exposes a class allowing to generate a MISP feed
in real-time
Each items can be appended on daily generated events

Example:
1 # Init generator
2 generator = FeedGenerator()
3

4 # Adding an attribute to the daily event
5 attr_type = "ip-src"
6 attr_value = "8.8.8.8"
7 additional_data = {}
8 generator.add_attribute_to_event(attr_type,
9 attr_value,

10 **additional_data)

7 10

Real-time Feed generator - Usage (2)

1 # Adding a MISP object (cowrie) to the daily event
2 obj_name = "cowrie"
3 obj_data = {
4 "session": "session_id",
5 "username": "admin",
6 "password": "admin",
7 "protocol": "telnet"
8 }
9 generator.add_object_to_event(obj_name, **obj_data)

8 10

Adding custom feed to MISP

Enabled
Lookup visible
Name
Provider
Source Format
Url
Source Format
Headers
Distribution
Default Tag
Filter rules

9 10

Q&A

https://github.com/MISP/PyMISP
https://github.com/MISP/
We welcome new functionalities and pull requests.

10 / 10

https://github.com/MISP/PyMISP
https://github.com/MISP/

