
Turning data into actionable in-
telligence
advanced features in MISP supporting your ana-
lysts and tools

Threat Sharing

CIRCL / Team MISP Project

13th ENISA-EC3 Workshop

about CIRCL

The Computer Incident Response Center Luxembourg (CIRCL)
is a government-driven initiative designed to provide a
systematic response facility to computer security threats
and incidents. CIRCL is the CERT for the private sector,
communes and non-governmental entities in Luxembourg
and is operated by securitymadein.lu g.i.e.

1 37

MISP and CIRCL

CIRCL is mandated by the Ministry of Economy and acting as
the Luxembourg National CERT for private sector.
CIRCL leads the development of the Open Source MISP
threat intelligence platform which is used by many military
or intelligence communities, private companies, financial
sector, National CERTs and LEAs globally.
CIRCL runs multiple large MISP communities performing
active daily threat-intelligence sharing.

2 37

The aim of this presentation

To give some insight into what sort of an evolution of our
various communities’ have gone through as observed over
the past 8 years
Show the importance of strong contextualisation...
...and how that can be leveraged when trying to make our
data actionable

3 37

Development based on practical user feedback

There are many different types of users of an information
sharing platform like MISP:
▶ Malware reversers willing to share indicators of analysis with

respective colleagues.
▶ Security analysts searching, validating and using indicators in

operational security.
▶ Intelligence analysts gathering information about specific

adversary groups.
▶ Law-enforcement relying on indicators to support or

bootstrap their DFIR cases.
▶ Risk analysis teams willing to know about the new threats,

likelyhood and occurences.
▶ Fraud analysts willing to share financial indicators to detect

financial frauds.

4 37

The initial scope of MISP

Extract information during the analysis process
Store and correlate these datapoints
Share the data with partners
Focus on technical indicators: IP, domain, hostname, hashes,
filename, pattern in file/memory/traffic
Generate protective signatures out of the data: snort,
suricata, OpenIOC

5 37

Initial workflow

6 37

Why was it so simplistic?

This was both a reflection of our maturity as a community
▶ Capabilities for extracting information
▶ Capabilities for utilising the information
▶ Lack of willingness to share context
▶ Lack of co-operation between teams doing technical

analysis/monitoring and threat-intel
The more growth we saw in maturity, the more we tried to
match it with our data-model, often against pushback

7 37

The growing need to contextualise data

There were separate factors that made our data-sets less
and less useful for detection/defense in general
▶ Growth of our communities
▶ Distinguish between information of interest and raw data
▶ False-positive management
▶ TTPs and aggregate information may be prevalent compared

to raw data (risk assessment)
▶ Increased data volumes leads to be able to prioritise

8 37

Our initial solution

Allow users to tag any information created in MISP
We wanted to be lax with what we accept in terms of data,
but be strict on what we fed to our tools, with strong filter
options
We had some ideas on how to potentially move forward...

9 37

Our initial failures

Try to capture different aspects of contextualisation into
normalised values (threat level, source reliability, etc)
▶ Didn’t scale with needs other than our own
▶ Incorporating new types of contextualisation would mean the

modification of the software
▶ Getting communities with established naming conventions to

use anything but their go-to vocabularies was a pipe-dream
▶ Heated arguments over numeric conversions

10 37

Human creativity

We tried an alternate approach instead: Free tagging
▶ Result was spectacularly painful, at least 7 different ways to

spell tlp:amber
▶ No canonisation for common terms lead to tagging ultimately

becoming a highly flawed tool for filtering within a sharing
community

11 37

How we ended up tackling the issue more
successfuly

We ended up with a mixed approach, currently implemented
by the MISP-taxonomy system
▶ Taxonomies are vocabularies of known tags
▶ Tags would be in a triple tag format

namespace:predicate=”value”
▶ Create your own taxonomies, recipients should be able to use

data you tag with them without knowing it at the first place
▶ Avoid any coding, stick to JSON

Massive success, approaching 100 taxonomies
Organisations can solve their own issues without having to
rely on us

12 37

We were still missing something...

Taxonomy tags often non self-explanatory
Example: universal understanding of tlp:green vs APT 28
For the latter, a single string was ill-suited
So we needed something new in addition to taxonomies -
Galaxies
▶ Community driven knowledge-base libraries used as tags
▶ Including descriptions, links, synonyms, meta information,

etc.
▶ Goal was to keep it simple and make it reusable
▶ Internally it works the exact same way as taxonomies (stick to

JSON)

13 37

Broadening the scope of what sort of context
we are interested in

Who can receive our data? What can they do with it?
Data accuracy, source reliability
Why is this data relevant to us?
Who do we think is behind it, what tools were used?
What sort of motivations are we dealing with? Who are the
targets?
How can we block/detect/remediate the attack?
What sort of impact are we dealing with?

14 37

Parallel to the contextualisation efforts: False
positive handling

Low quality / false positive prone information being shared
Lead to alert-fatigue
Exclude organisation xy out of the community?
False positives are often obvious - can be encoded
Warninglist system1 aims to do that
Lists of well-known indicators which are often
false-positives like RFC1918 networks, ...

1https://github.com/MISP/misp-warninglists
15 37

https://github.com/MISP/misp-warninglists

More complex data-structures for a modern age

Atomic attributes were a great starting point, but lacking in
many aspects
MISP objects2 system
▶ Simple templating approach
▶ Use templating to build more complex structures
▶ Decouple it from the core, allow users to define their own

structures
▶ MISP should understand the data without knowing the

templates
▶ Massive caveat: Building blocks have to be MISP attribute

types
▶ Allow relationships to be built between objects

2https://github.com/MISP/misp-objects
16 37

https://github.com/MISP/misp-objects

Supporting specific datamodel

17 37

Continuous feedback loop

Data ingested by MISP was in a sense frozen in time
We had a creation data, but lacked a way to use the output
of our detection
Lead to the introduction of the Sighting system
The community could sight indicators and convey the time of
sighting
Potentially powerful tool for IoC lifecycle management,
clumsy query implementation default

18 37

Supporting specific datamodel

19 37

Making use of all this context

Most obvious goal: Improve the way we query data
▶ Unified all export APIs
▶ Incorporate all contextualisation options into API filters
▶ Allow for an on-demand way of excluding potential false

positives
▶ Allow users to easily build their own export modules feed

their various tools

20 37

Example query

/attributes/restSearch

{
" returnFormat " : " n e t f i l t e r " ,
" enforceWarningl is t " : 1 ,
" tags " : {

"NOT " : [
" t l p : white " ,
" type : OSINT "

] ,
"OR " : [

" misp−galaxy : threat −actor =\" Sofacy \ " " ,
" misp−galaxy : sector =\" Chemical \""

] ,
}

}

21 37

Synchronisation filters

Make decisions on whom to share data with based on
context
▶ MISP by default decides based on the information creator’s

decision who data gets shared with
▶ Community hosts should be able to act as a safety net for

sharing
Push filters - what can I push?
Pull filters - what am I interested in?
Local tags allow for information flow control

22 37

The emergence of ATT&CK and similar galaxies

Standardising on high-level TTPs was a solution to a long list
of issues
Adoption was rapid, tools producing ATT&CK data, familiar
interface for users
A much better take on kill-chain phases in general
Feeds into our filtering and situational awareness needs
extremely well
Gave rise to other, ATT&CK-like systems tackling other
concerns
▶ attck4fraud 3 by Francesco Bigarella from ING
▶ Election guidelines 4 by NIS Cooperation Group

3https://www.misp-project.org/galaxy.html#_attck4fraud
4https:

//www.misp-project.org/galaxy.html#_election_guidelines
23 37

https://www.misp-project.org/galaxy.html#_attck4fraud
https://www.misp-project.org/galaxy.html#_election_guidelines
https://www.misp-project.org/galaxy.html#_election_guidelines

Example query to generate ATT&CK heatmaps

/events/restSearch

{
" returnFormat " : " at tack " ,
" tags " : [

" misp−galaxy : sector =\" Chemical \""
] ,
" timestamp " : "365d"

}

24 37

A sample result for the above query

25 37

Monitor trends outside of MISP (example:
dashboard)

26 37

Decaying of indicators

We were still missing a way to use all of these systems in
combination to decay indicators
Move the decision making from complex filter options to
complex decay models
Decay models would take into account various taxonomies,
sightings, the type of each indicator Sightings and Creation
date
The first iteration of what we have in MISP now took:
▶ 2 years of research
▶ 3 published research papers
▶ A lot of prototyping

27 37

Scoring Indicators: Our solution

score(Attribute) = base_score(Attribute, Model) • decay(Model, time)

Where,

score ∈ [0, 100]
base_score ∈ [0, 100]
decay is a function defined by model’s parameters
controlling decay speed
Attribute Contains Attribute’s values and metadata
(Taxonomies, Galaxies, ...)

Model Contains the Model’s configuration

28 37

Implementation in MISP: Event/view

Decay score toggle button
▶ Shows Score for each Models associated to the Attribute type

29 37

Implementation in MISP: API result

/attributes/restSearch
" A t t r i b u t e " : [

{
" category " : " Network a c t i v i t y " ,
" type " : " ip − src " ,
" to_ids " : true ,
" timestamp " : "1565703507" ,
[. . .]
" value " : " 8 . 8 . 8 . 8 " ,
" decay_score " : [

{
" score " : 54 .475223849544456 ,
" decayed " : fa lse ,
" DecayingModel " : {

" id " : "85 " ,
"name " : " NIDS Simple Decaying Model "

}
}

] ,
[. . .]

30 37

Implementation in MISP: Index

View, update, add, create, delete, enable, export, import

31 37

Implementation in MISP: Fine tuning tool

Create, modify, visualise, perform mapping

32 37

Implementation in MISP: base_score tool

Adjust Taxonomies relative weights 33 37

Implementation in MISP: simulation tool

Simulate Attributes with different Models

34 37

Implementation in MISP: API query body

/attributes/restSearch

{
" includeDecayScore " : 1 ,
" includeFullModel " : 0 ,
" excludeDecayed " : 0 ,
" decayingModel " : [8 5] ,
" modelOverrides " : {

" threshold " : 30
}
" score " : 30 ,

}

35 37

To sum it all up...

Massive rise in user capabilities
Growing need for truly actionable threat intel
Lessons learned:
▶ Context is king - Enables better decision making
▶ Intelligence and situational awareness are natural

by-products of context
▶ Don’t lock users into your workflows, build tools that enable

theirs

36 37

Get in touch if you have any questions

Contact us
▶ https://twitter.com/mokaddem_sami
▶ https://twitter.com/iglocska

Contact CIRCL
▶ info@circl.lu
▶ https://twitter.com/circl_lu
▶ https://www.circl.lu/

Contact MISPProject
▶ https://github.com/MISP
▶ https://gitter.im/MISP/MISP
▶ https://twitter.com/MISPProject

37 / 37

https://twitter.com/mokaddem_sami
https://twitter.com/iglocska
https://twitter.com/circl_lu
https://www.circl.lu/
https://github.com/MISP
https://gitter.im/MISP/MISP
https://twitter.com/MISPProject

