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CONTEXT
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L_Context

MISP is a large project

Your production environment is even more complex
3rd party services are even worse

Querying MISP via CURL is doable, but get’s painful fast
Talking to MySQL directly can be dangerous

POST a JSON blob, receive a JSON blob. You can do it
manually(-ish)
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BIG PICTURE
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LBig picture

m Core goal: providing stable access to APIs, respect access
control

m Simplifying handling & automation of indicators in 3rd party
tools

m Hiding complexity of the JSON blobs

m Providing pre-cooked examples for commonly used
operations

m Helping integration with existing infrastructure
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COMMON QUERIES: RECENT CHANGES ON A TIMEFRAME

There are 4 main cases here:
m Metadata of the events that have been modified

> search_index = timestamp (1h, 1d, 7d, ...), returns list of all
the modified events

m Full events (metadata + attributes)
» search = timestamp (1h, 1d, 7d, ...)
m Modified attributes
» search = controller = attributes and timestamp (1h, 1d, 7d, ...)
m Other use case: get last published events by using the last
parameter in the search method.

L-common queries: Recent changes on a
timeframe
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COMMON QUERIES: SEARCH THINGS

L-common queries: Search things
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There are 3 main cases here:
m Easy, but slow: full text search with search_all

m Faster: use the search method and search by tag, type,
enforce the warning lists, with(-out) attachments, dates
interval, ...

m Get malware samples (if available on the instance).
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COMMON QUERIES: CREATE THINGS

L_common queries: create things
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There are 3 main cases here:
m Add Event, edit its metadata
m Add attributes or objects to event
m (un)Tag event or attribute (soon object)
m Edit Attributes medatada
m Upload malware sample (and automatically expand it)
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ADMINISTRATIVE TASKS

L_Administrative tasks
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Assyming you have the right to do it on the instance.
m Managing users
m Managing organisations
m Managing sync servers
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OTHER CAPABILITIES
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L_other Capabilities

Upload/download samples

Proposals: add, edit, accept, discard

Sightings: Get, set, update

Export statistics

Manage feeds

Get MISP server version, recommended PyMISP version
And more, look at the api file
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MISPEVENT - USECASE

from pymisp import MISPEvent, EncodeUpdate

L_MISPEvent - Usecase
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# Create a new event with default values
event = MISPEvent()

# Load an existing JSON dump (optional)
event.load_file(’'Path/to/event.json’)
event.info = 'My cool event’ # Duh.

# Add an attribute of type ip—dst
event.add_attribute(’ip—dst’, '8.8.8.8")

# Mark an attribute as deleted (From 2.4.60)
event.delete_attribute(’<Attribute UUID>")

# Dump as json
event_as_jsondump = json.dumps(event, cls=EncodeUpdate)
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BASICS

m Python 3.5+ is recommended

m PyMISP is always inline with current version (pip3 install
pymisp)

m Dev version: pip3 install
git+https://github.com/MISP/PyMISP.git

m Get your auth key from:
https://misppriv.circl.lu/events/automation

> Not available: you don’t have "Auth key access" role. Contact
your instance admin.

m Source available here: git clone
https://github.com/MISP/PyMISP.git

L_Basics
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EXAMPLES

m PyMISP needs to be installed (duh)
m Usage:
> Create examples/keys.py with the following content
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L_Examples

misp_url = "https://url—to—your—misp"
misp_key = "<API_KEY>"
misp_verifycert = True

m Proxy support:

proxies = {
"http’': "http://127.0.0.1:8123 ",
"https': 'http://127.0.0.1:8123 ",
}

PyMISP(misp_url, misp_key, misp_verifycert, proxies=proxies)
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L_Examples
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m Lots of ideas on how to use the API

m You may also want to look at the tests directory

m All the examples use argparse. Help usage is available:
script.py -h

» add_file_object.py: Attach a file (PE/ELF/Mach-0) object to
an event

» upload.py: Upload a malware sample (use advanced
expansion is available on the server)

> last.py: Returns all the most recent events (on a timeframe)

> add_named_attribute.py: Add attribute to an event

» sighting.py: Update sightings on an attribute

> stats.py: Returns the stats of a MISP instance

» {add,edit,create}_user.py : Add, Edit, Create a user on MISP
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L_Usage
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m Basic example

from pymisp import PyMISP
api = PyMISP(url, apikey, verifycert=True, debug=False, proxies=None)
response = api.<function>
if response[’error’]:
# <something went wrong>
else:

# <do something with the output>
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CONCEPT BEHIND ABSTRACTMISP

m JSON blobs are python dictionaries
B ... Accessing content can be a pain

m AbstractMISP inherits collections.MutableMapping, they are
all dictionaries!

m ... Has helpers to load, dump, and edit JSON blobs

m Important: All the public attributes (not starting with a _)
defined in a class are dumped to JSON
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L—Concept behind AbstractMISP

m Tags: Events and Attributes have tags, soon Objects. Tag
handling is defined in this class.

m edited: When pushing a full MISPEvent, only the objects
without a timestamp, or with a newer timestamp will be
updated. This method recursively finds updated events, and
removes the timestamp key from the object.
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MISPEVENT, MISPATTRIBUTE, MISPOBJECT,

MISPSIGHTING...
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L_MISPEvent, MISPAttribute, MISPObject,
MISPSighting...

m Pythonic representation of MISP elements

m Easy manipulation
» Load an existing event
> Update te metadata, add attributes, objects, tags, mark an
attribute as deleted, ...
> Set relations between objects
» Load and add attachments or malware samples as pseudo
files

m Dump to JSON
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MISPEVENT - MAIN ENTRYPOINTS

load_file(event_path)

load(json_event)

add_attribute(type, value, **kwargs)
add_object(obj=None, **kwargs)
add_attribute_tag(tag, attribute_identifier)
get_attribute_tag(attribute_identifier)
add_tag(tag=None, **kwargs)

objects[], attributes[], tagsl]

edited, all other paramaters of the MISPEvent element (info,
date, ...)

m to_json()

L_MISPEvent - Main entrypoints
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MISPOBJECT - MAIN ENTRYPOINTS

add_attribute(object_relation, **value)

add_reference(referenced_uuid, relationship_type,
comment=None, **kwargs)

has_attributes_by_relation(list_of_relations)
get_attributes_by_relation(object_relation)
attributes[], relations[]

edited, all other paramaters of the MISPObject element
(name, comment, ...)

to_json()
Can be validated against their template

Can have default parameters applied to all attributes (i.e.
distribution, category, ...)
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L_MISPObject - Main entrypoints
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L_MISPAttribute - Main entrypoints
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m add_tag(tag=None, **kwargs)
m delete()
m malware_binary (if relevant)

m tags|]

m edited, all other paramaters of the MISPObject element
(value, comment, ...)

m to_json()
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PYMISP - TooLs

L_pyMISP - Tools
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m Libraries requiring specfic 3rd party dependencies

m Callable via PyMISP for specific usecases
m Curently implemented:

» OpenlOC to MISP Event
» MISP to Neos4)
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L_pyMISP - Default objects generators
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m File - PE/ELF/MachO - Sections
m VirusTotal

m Generic object generator
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PYMISP - LOGGING / DEBUGGING

m debug=True passed to the constructor enable debug to
stdout

m Configurable using the standard logging module

m Show everything send to the server and received by the

client
import pymisp
import logging

L_PyMISP - Logging / Debugging
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logger = logging.getLogger('pymisp’)
logger.setLevel(logging .DEBUG) # enable debug to stdout

logging.basicConfig(level=logging .DEBUG, # Enable debug to file
filename="debug.log",
filemode="w",
format=pymisp . FORMAT)
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Q&A 2
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m https://github.com/MISP/PyMISP
m https://github.com/MISP/
m https://pymisp.readthedocs.io/
m We welcome new functionalities and pull requests.
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