Deep-dive into PyMISP

2022-08-05

Threat Sharing

DEEP-DIVE INTO PYMISP
MISP - THREAT SHARING

CIRCL / TEAM MISP PROJECT

HTTP://WWW.MISP-PROJECT.ORG/
TWITTER: @MISPPROJECT

Threat Sharing

http://www.misp-project.org/
https://twitter.com/mispproject
http://www.misp-project.org/
https://twitter.com/mispproject

Deep-dive into PyMISP

CONTEXT

2022-08-05

L_Context

MISP is a large project

Your production environment is even more complex
3rd party services are even worse

Querying MISP via CURL is doable, but get’s painful fast
Talking to MySQL directly can be dangerous

POST a JSON blob, receive a JSON blob. You can do it
manually(-ish)

Deep-dive into PyMISP

BIG PICTURE

2022-08-05

LBig picture

m Core goal: providing stable access to APIs, respect access
control

m Simplifying handling & automation of indicators in 3rd party
tools

m Hiding complexity of the JSON blobs

m Providing pre-cooked examples for commonly used
operations

m Helping integration with existing infrastructure

Deep-dive into PyMISP

COMMON QUERIES: RECENT CHANGES ON A TIMEFRAME

There are 4 main cases here:
m Metadata of the events that have been modified

> search_index = timestamp (1h, 1d, 7d, ...), returns list of all
the modified events

m Full events (metadata + attributes)
» search = timestamp (1h, 1d, 7d, ...)
m Modified attributes
» search = controller = attributes and timestamp (1h, 1d, 7d, ...)
m Other use case: get last published events by using the last
parameter in the search method.

L-common queries: Recent changes on a
timeframe

2022-08-05

Deep-dive into PyMISP

COMMON QUERIES: SEARCH THINGS

L-common queries: Search things

2022-08-05

There are 3 main cases here:
m Easy, but slow: full text search with search_all

m Faster: use the search method and search by tag, type,
enforce the warning lists, with(-out) attachments, dates
interval, ...

m Get malware samples (if available on the instance).

Deep-dive into PyMISP

COMMON QUERIES: CREATE THINGS

L_common queries: create things

2022-08-05

There are 3 main cases here:
m Add Event, edit its metadata
m Add attributes or objects to event
m (un)Tag event or attribute (soon object)
m Edit Attributes medatada
m Upload malware sample (and automatically expand it)

Deep-dive into PyMISP

ADMINISTRATIVE TASKS

L_Administrative tasks

2022-08-05

Assyming you have the right to do it on the instance.
m Managing users
m Managing organisations
m Managing sync servers

Deep-dive into PyMISP

OTHER CAPABILITIES

2022-08-05

L_other Capabilities

Upload/download samples

Proposals: add, edit, accept, discard

Sightings: Get, set, update

Export statistics

Manage feeds

Get MISP server version, recommended PyMISP version
And more, look at the api file

e
Deep-dive into PyMISP

MISPEVENT - USECASE

from pymisp import MISPEvent, EncodeUpdate

L_MISPEvent - Usecase

2022-08-05

Create a new event with default values
event = MISPEvent()

Load an existing JSON dump (optional)
event.load_file(’'Path/to/event.json’)
event.info = 'My cool event’ # Duh.

Add an attribute of type ip—dst
event.add_attribute(’ip—dst’, '8.8.8.8")

Mark an attribute as deleted (From 2.4.60)
event.delete_attribute(’<Attribute UUID>")

Dump as json
event_as_jsondump = json.dumps(event, cls=EncodeUpdate)

Deep-dive into PyMISP

BASICS

m Python 3.5+ is recommended

m PyMISP is always inline with current version (pip3 install
pymisp)

m Dev version: pip3 install
git+https://github.com/MISP/PyMISP.git

m Get your auth key from:
https://misppriv.circl.lu/events/automation

> Not available: you don’t have "Auth key access" role. Contact
your instance admin.

m Source available here: git clone
https://github.com/MISP/PyMISP.git

L_Basics

2022-08-05

9

https://misppriv.circl.lu/events/automation
https://github.com/MISP/PyMISP.git
https://misppriv.circl.lu/events/automation
https://github.com/MISP/PyMISP.git

.
Deep-dive into PyMISP

EXAMPLES

m PyMISP needs to be installed (duh)
m Usage:
> Create examples/keys.py with the following content

2022-08-05

L_Examples

misp_url = "https://url—to—your—misp"
misp_key = "<API_KEY>"
misp_verifycert = True

m Proxy support:

proxies = {
"http’': "http://127.0.0.1:8123 ",
"https': 'http://127.0.0.1:8123 ",
}

PyMISP(misp_url, misp_key, misp_verifycert, proxies=proxies)

e i
EXAMPLES Deep-dive into PyMISP

L_Examples

2022-08-05

m Lots of ideas on how to use the API

m You may also want to look at the tests directory

m All the examples use argparse. Help usage is available:
script.py -h

» add_file_object.py: Attach a file (PE/ELF/Mach-0) object to
an event

» upload.py: Upload a malware sample (use advanced
expansion is available on the server)

> last.py: Returns all the most recent events (on a timeframe)

> add_named_attribute.py: Add attribute to an event

» sighting.py: Update sightings on an attribute

> stats.py: Returns the stats of a MISP instance

» {add,edit,create}_user.py : Add, Edit, Create a user on MISP

e
Deep-dive into PyMISP

L_Usage

2022-08-05

m Basic example

from pymisp import PyMISP
api = PyMISP(url, apikey, verifycert=True, debug=False, proxies=None)
response = api.<function>
if response[’error’]:
<something went wrong>
else:

<do something with the output>

Deep-dive into PyMISP

CONCEPT BEHIND ABSTRACTMISP

m JSON blobs are python dictionaries
B ... Accessing content can be a pain

m AbstractMISP inherits collections.MutableMapping, they are
all dictionaries!

m ... Has helpers to load, dump, and edit JSON blobs

m Important: All the public attributes (not starting with a _)
defined in a class are dumped to JSON

2022-08-05

L—Concept behind AbstractMISP

m Tags: Events and Attributes have tags, soon Objects. Tag
handling is defined in this class.

m edited: When pushing a full MISPEvent, only the objects
without a timestamp, or with a newer timestamp will be
updated. This method recursively finds updated events, and
removes the timestamp key from the object.

Deep-dive into PyMISP

MISPEVENT, MISPATTRIBUTE, MISPOBJECT,

MISPSIGHTING...

2022-08-05

L_MISPEvent, MISPAttribute, MISPObject,
MISPSighting...

m Pythonic representation of MISP elements

m Easy manipulation
» Load an existing event
> Update te metadata, add attributes, objects, tags, mark an
attribute as deleted, ...
> Set relations between objects
» Load and add attachments or malware samples as pseudo
files

m Dump to JSON

Deep-dive into PyMISP

MISPEVENT - MAIN ENTRYPOINTS

load_file(event_path)

load(json_event)

add_attribute(type, value, **kwargs)
add_object(obj=None, **kwargs)
add_attribute_tag(tag, attribute_identifier)
get_attribute_tag(attribute_identifier)
add_tag(tag=None, **kwargs)

objects[], attributes[], tagsl]

edited, all other paramaters of the MISPEvent element (info,
date, ...)

m to_json()

L_MISPEvent - Main entrypoints

2022-08-05

MISPOBJECT - MAIN ENTRYPOINTS

add_attribute(object_relation, **value)

add_reference(referenced_uuid, relationship_type,
comment=None, **kwargs)

has_attributes_by_relation(list_of_relations)
get_attributes_by_relation(object_relation)
attributes[], relations[]

edited, all other paramaters of the MISPObject element
(name, comment, ...)

to_json()
Can be validated against their template

Can have default parameters applied to all attributes (i.e.
distribution, category, ...)

2022-08-05

Deep-dive into PyMISP

L_MISPObject - Main entrypoints

MISPATTRIBUTE - MAIN ENTRYPOINTS Dzl e (Pl '

L_MISPAttribute - Main entrypoints

2022-08-05

m add_tag(tag=None, **kwargs)
m delete()
m malware_binary (if relevant)

m tags|]

m edited, all other paramaters of the MISPObject element
(value, comment, ...)

m to_json()

Rvia f
Deep-dive into PyMISP

PYMISP - TooLs

L_pyMISP - Tools

2022-08-05

m Libraries requiring specfic 3rd party dependencies

m Callable via PyMISP for specific usecases
m Curently implemented:

» OpenlOC to MISP Event
» MISP to Neos4)

PYMISP - DEFAULT OBJECTS GENERATORS Deep-dive into PyMISP

L_pyMISP - Default objects generators

2022-08-05

m File - PE/ELF/MachO - Sections
m VirusTotal

m Generic object generator

P
Deep-dive into PyMISP

PYMISP - LOGGING / DEBUGGING

m debug=True passed to the constructor enable debug to
stdout

m Configurable using the standard logging module

m Show everything send to the server and received by the

client
import pymisp
import logging

L_PyMISP - Logging / Debugging

2022-08-05

logger = logging.getLogger('pymisp’)
logger.setLevel(logging .DEBUG) # enable debug to stdout

logging.basicConfig(level=logging .DEBUG, # Enable debug to file
filename="debug.log",
filemode="w",
format=pymisp . FORMAT)

Deep-dive into PyMISP

Q&A 2
S
ﬂ' 8 -qgA
N
MISP

Threat Sharing
m https://github.com/MISP/PyMISP
m https://github.com/MISP/
m https://pymisp.readthedocs.io/
m We welcome new functionalities and pull requests.

21/ 21

https://github.com/MISP/PyMISP
https://github.com/MISP/
https://pymisp.readthedocs.io/
https://github.com/MISP/PyMISP
https://github.com/MISP/
https://pymisp.readthedocs.io/

