
MISP and Decaying of Indicators
An indicator scoring method and ongoing imple-
mentation in MISP

Threat Sharing

Team CIRCL

info@circl.lu

September 16, 2022

Expiring IOCs: Why and How?

1 29

Indicators - Problem Statement

Sharing information about threats is crucial
Organisations are sharing more and more

Contribution by unique organisation (Orgc.name) on MISPPriv:

Date Unique Org
2013 17
2014 43
2015 82
2016 105
2017 118
2018 125
2019-10 135

1 {
2 "distribution": [1, 2, 3]
3 }

2 29

Indicators - Problem Statement

Various users and organisations can share data via MISP,
multiple parties can be involved
I Trust, data quality and time-to-live issues
I Each user/organisation has di�erent use-cases and interests

Conflicting interests such as operational security, attribution,...
(depends on the user)

→ Can be partially solved with Taxonomies

Attributes can be shared in large quantities (more than 7.3
million on MISPPRIV)
I Partial info about their freshness (Sightings)
I Partial info about their validity (last update)
→ Can be partially solved with our Decaying model

3 29

Indicators - Problem Statement

Various users and organisations can share data via MISP,
multiple parties can be involved
I Trust, data quality and time-to-live issues
I Each user/organisation has di�erent use-cases and interests

Conflicting interests such as operational security, attribution,...
(depends on the user)

→ Can be partially solved with Taxonomies

Attributes can be shared in large quantities (more than 7.3
million on MISPPRIV)
I Partial info about their freshness (Sightings)
I Partial info about their validity (last update)
→ Can be partially solved with our Decaying model

3 29

Requirements to enjoy the decaying feature in
MISP

Starting from MISP 2.4.116, the decaying feature is available
Don’t forget to update the decay models and enable the
ones you want
The decaying feature has no impact on the information in
MISP, it’s just an overlay to be used in the user-interface and
API
Decay strongly relies on Taxonomies and Sightings, don’t
forget to review their configuration

4 29

Sightings - Refresher

Sightings add temporal context to indicators. A user, script or an
IDS can extend the information related to indicators by reporting
back to MISP that an indicator has been seen, or that an
indicator can be considered as a false-positive

Sightings give more credibility/visibility to indicators
This information can be used to prioritise and decay
indicators

5 29

Organisations opt-in - setting a level of
confidence

MISP is a peer-to-peer system, information passes through
multiple instances.

Producers can add context (such as tags from Taxonomies,
Galaxies) about their asserted confidence or the reliability of
the data
Consumers can have di�erent levels of trust in the
producers and/or analysts themselves
Users might have other contextual needs

→ Achieved thanks to Taxonomies

6 29

Taxonomies - Refresher (1)

Tagging is a simple way to attach a classification to an Event
or an Attribute
Classification must be globally used to be e�cient

7 29

Taxonomies - Refresher (2)

→ Cherry-pick allowed Tags
8 29

Taxonomies - Refresher (3)

Some taxonomies have numerical_value
→ Can be used to prioritise Attributes

Description Value
Completely reliable 100
Usually reliable 75
Fairly reliable 50
Not usually reliable 25
Unreliable 0
Reliability cannot be judged 50 ?
Deliberatly deceptive 0 ?

Description Value
Confirmed by other sources 100
Probably true 75
Possibly true 50
Doubtful 25
Improbable 0
Truth cannot be judged 50 ?

9 29

Scoring Indicators: Our solution

score(Attribute) = base_score(Attribute, Model) • decay(Model, time)

Where,

score ∈ [0,+∞
base_score ∈ [0, 100]
decay is a function defined by model’s parameters
controlling decay speed
Attribute Contains Attribute’s values and metadata
(Taxonomies, Galaxies, ...)

Model Contains the Model’s configuration

10 29

Current implementation in
MISP

11 29

Implementation in MISP: Event/view

Decay score toggle button
I Shows Score for each Models associated to the Attribute type

12 29

Implementation in MISP: API result

/attributes/restSearch
1 "Attribute": [
2 {
3 "category": "Network activity",
4 "type": "ip-src",
5 "to_ids": true,
6 "timestamp": "1565703507",
7 [...]
8 "value": "8.8.8.8",
9 "decay_score": [

10 {
11 "score": 54.475223849544456,
12 "decayed": false,
13 "DecayingModel": {
14 "id": "85",
15 "name": "NIDS Simple Decaying Model"
16 }
17 }
18],
19 [...]
20 13 29

Implementation in MISP: Playing with Models

Automatic scoring based on default values
User-friendly UI to manually set Model configuration
(lifetime, decay, etc.)
Simulation tool
Interaction through the API
Opportunity to create your own formula or algorithm

14 29

Decaying Models in Depth

15 29

Scoring Indicators: base_score (1)

score(Attribute) = base_score(Attribute, Model) • decay(Model, time)

When scoring indicators1, multiple parameters2 can be taken into
account. The base score is calculated with the following in mind:

Data reliability, credibility, analyst skills, custom
prioritisation tags (economical-impact), etc.
Trust in the source

base_score = ωtg · tags + ωsc · source_confidence

Where,
ωsc + ωtg = 1

1Paper available: https://arxiv.org/pdf/1803.11052
2at a variable extent as required

16 29

https://arxiv.org/pdf/1803.11052

Scoring Indicators: base_score (2)

Current implentation ignores source_confidence:

→ base_score = tags

→ The base_score can be use to prioritize attribute based on
their attached context and source

17 29

Scoring Indicators: decay speed (1)

score(Attribute) = base_score(Attribute, Model) • decay(Model, time)

The decay is calculated using:
The lifetime of the indicator
I May vary depending on the indicator type
I short for an IP, long for an hash

The decay rate, or speed at which an attribute loses score
over time
The time elapsed since the latest update or sighting

18 29

Scoring Indicators: putting it all toghether

→ decay rate is re-initialized upon sighting addition, or said
di�erently, the score is reset to its base score as new sightings
are applied.

score = base_score ·

(
1−

(
t
τ

) 1
δ

)

τ = lifetime
δ = decay speed

19 29

Implementation in MISP: Models definition

� score = base_score ·
(

1 −
(

t
τ

) 1
δ

)
Models are an instanciation of the formula where elements can
be defined:

Parameters: lifetime, decay_rate, threshold
base_score
default base_score
formula
associate Attribute types
creator organisation

20 29

Implementation in MISP: Models Types

Multiple model types are available
Default Models: Models created and shared by the
community. Available from misp-decaying-models
repository3.
I → Not editable

Organisation Models: Models created by a user belonging to
an organisation
I These models can be hidden or shared to other organisation
I → Editable

3https://github.com/MISP/misp-decaying-models.git
21 29

https://github.com/MISP/misp-decaying-models.git

Implementation in MISP: Index

View, update, add, create, delete, enable, export, import

22 29

Implementation in MISP: Fine tuning tool

Create, modify, visualise, perform mapping

23 29

Implementation in MISP: base_score tool

Adjust Taxonomies relative weights 24 29

Implementation in MISP: simulation tool

Simulate Attributes with di�erent Models

25 29

Implementation in MISP: API query body

/attributes/restSearch
1 {
2 "includeDecayScore": 1,
3 "includeFullModel": 0,
4 "excludeDecayed": 0,
5 "decayingModel": [85],
6 "modelOverrides": {
7 "threshold": 30
8 }
9 "score": 30,

10 }
11

26 29

Creating a new decay algorithm (1)

The current architecture allows users to create their own
formulae.

1. Create a new file $filename in
app/Model/DecayingModelsFormulas/

2. Extend the Base class as defined in DecayingModelBase
3. Implement the two mandatory functions computeScore

and isDecayed using your own formula/algorithm
4. Create a Model and set the formula field to $filename

Use cases:
Add support for more feature (expiration taxonomy)
Query external services then influence the score
Completely di�erent approach (i.e streaming algorithm)
...

27 29

Creating a new decay algorithm (2)

1 <?php
2 include_once ’ Base . php ’ ;
3
4 c lass Polynomial extends DecayingModelBase
5 {
6 publ ic const DESCRIPTION = ’ The descr ipt ion of your new

decaying algorithm ’ ;
7
8 publ ic funct ion computeScore ($model , $at t r ibute , $base_score ,

$elapsed_time)
9 {

10 // algorithm return ing a numerical score
11 }
12
13 publ ic funct ion isDecayed ($model , $at t r ibute , $score)
14 {
15 // algorithm return ing a boolean s t a t i n g
16 // i f the a t t r i b u t e i s expired or not
17 }
18 }
19 ?>
20

28 29

Decaying Models 2.0

Improved support of Sightings
I False positive Sightings should somehow reduce the

score
I Expiration Sightings should mark the attribute as decayed

Potential Model improvements
I Instead of resetting the score to base_score once a

Sighting is set, the score should be increased additively
(based on a defined coe�cient); thus prioritizing surges
rather than infrequent Sightings

I Take into account related Tags or Correlations when
computing score

Increase Taxonomy coverage
I Users should be able to manually override the

numerical_value of Tags
For specific type, take into account data from other services
I Could fetch data from BGP ranking, Virus Total, Passive X for

IP/domain/... and adapt the score
29 / 29

	Expiring IOCs: Why and How?
	Current implementation in MISP
	Decaying Models in Depth

