MISP CORE DEVELOPMENT HANDS-ON
EXERCISE
BUILDING A SMALL NIFTY FEATURE FOR THE MISP CORE

CIRCL / TEAM MISP PROJECT n
MISP J

Threat Sharing
FIRST.ORG/AFRICA CERT M Is

Threat Sharing




SOME PRACTICAL THINGS FIRST...

m If you'd like to take a peak at the main files already
implemented:
https://github.com/iglocska/misp-dev-training-cheat-sheet

m Full implementation:
https://github.com/MISP/MISP/tree/dev_session/app




LET'S TRY TO DEVELOP A FEATURE TOGETHER

m Idea: Users should have the option to set alert filters for the
publish alert e-mails

m By default receive all alerts as before
m If a filter is set, check if the alert is interesting for us or not




HOW TO ENSURE THAT THE FEATURE IS USEFUL FOR THE

COMMUNITY AT LARGE?

m Always try to think in reusable systems instead of fixing a
single issue
» Much higher chance of getting a PR merged if it doesn’t just
cover your specific use-case
» Try to stay two steps ahead, see how your feature can be
reused for other tasks




USER SETTINGS - A LONG OVERDUE FEATURE

m Allow users to set preferences for certain views

m For high level users, all the technical details are sometimes
wasted

m Simply not being interested in certain types of data points

m Non-standard MISP deployments (island only MISP
instances, etc)

m User pre-sets for certain settings




OBJECTIVES OF THE FEATURE

m User should be able to do the following with filter rules:
> set
> get
> remove
> index
m Filter rules should be flexible - we do not want to anticipate
all possible settings in advance

m Ensure that the system is easy to extend and reuse




BEFORE WE START WITH ANYTHING...

m Update our MISP instance (git pull origin 2.4)
m Fork github.com/MISP/MISP (via the github interface)
m Add a new remote to our fork:
» via username/password auth: git remote add my_fork
https://github.com/iglocska/MISP
» via ssh: git remote add my_fork
gitgithub.com:iglocska/MISP.git
m Generally a good idea to work on a new branch: git checkout
-b dev_exercise

m Enable debug in MISP

- 6|



IMPLEMENTATION

m Storage:

Single key/value table for all settings

Each user should be able to set a single instance of a key
Values could possible become complex, let's use JSON!

Add timestamping for traceability

Consider which fields we might want to look-up frequently for
indexing

VYyVYYVYY




THE DATABASE CHANGES WE NEED

m The table structure:

id int(11) auto increment //primary key
key varchar(100) //add index!

value text //json

user_id int(11) //add index!

timestamp int(11) //add index!

m Tie it to into the upgrade system (app/Model/AppModel.php)
m Test our upgrade process! Check the output in the audit logs

VVYVYYVYY




CHECKLIST

m Outline of the changes needed:

New Controller (UserSettingsController.php)

New Model (UserSetting.php)

New Views (setSetting, index)

Add new controller actions to ACL

Update the e-mail alert system to use the functionality

>
>
>
>
»




CREATE THE NEW MODEL SKELETON

m location: /var/www/MISP/app/Model/UserSetting.php

m Create basic skeleton

m Add model relationships (hasMany/BelongsTo)

m Use the hooking functionality to deal with the JSON field
(beforeSave(), beforeFind())

m Add a function that can be used to check if a user should get
an alert based on filters (checkPublishFilter())

m Add a function to check if a user can access/modify a setting
(checkAccess())




CREATE THE CONTROLLER SKELETON

m location: /var/www/MISP/app/Model/UserSetting.php
m Create basic skeleton

m Set pagination rules

m Define CRUD functions (exceptionally, we diverge here from
the norm)
> setSetting()
» getSetting()
» index()
> delete()




START WITH AN APl ONLY APPROACH AT FIRST

m setSetting():
» Accepted methods: ADD / POST
» Separate handling of API / Ul
» POST should create/update an entry
» GET should describe the API




GETSETTING / INDEX

m getSetting():

| 4
>

vVvyvyVYy V

Accepted methods: GET

Retrieves a single setting based on either ID or setting key
and user_id

Encode the data depending on API/UI

Accepted methods: GET

List all settings

Filter user scope on demand

Filter available scopes based on role



DELETE

m delete():

» Accepted methods: POST / DELETE
> Deletes a single entry based on ID or setting key
» Encode the data depending on API/UI




ADD THE ACL FUNCTIONALITIES

m Tie functions into checkAccess():

» Check if user is allowed to execute actions and throw
exceptions if not
> Add it to: setSetting() / getSetting() / delete()

m Consider that:

» Site admins have full reign
» Org admins can manage their own users
» Everyone else can self-manage




TEST THE FUNCTIONALITIES

m Use the REST client
m Expectations

>
| 4

GET on /setSetting and /delete describing our endpoints
POST /setSetting with "key": "publish_filter", "value":
"Event.tags":"%sofacy%" should return newly added or
modified filter

GET on /index should list our entries, GET on /getSetting
should show an individual entry

DELETE on /delete should delete the entry




START ADDING THE Ul COMPONENTS

m We now have a rudimentary CRUD, let's add some simple Ul
views

> setSetting as a simple form

» index should use the parametrised generators (IndexTable)

» Add both views to the menu systems (side-menu, global
menu)

» Don't forget about sanitisation and translations!




ADD THE CHECKPUBLISHFILTER() FUNCTION TO THE E-

MAILING

m Trace the code path of the e-mail sending to understand the
process

m Decide on the best place to inject our check
m Don't break the flow of the process!

m What do we have access to at this point? What format are
they in?




TEST IF OUR CODE WORKS CORRECTLY

Do we see any notices / errors?
Is our code easily accessible?

Consider other roles! Can users/org admins do things we
don’t want them to do?

Is our code-base breaking the default behaviour?
Is our update script working as expected?




PUSH OUR CODE TO OUR FORK AND CREATE A PULL

REQUEST

m git status to check what changed / got added

m git add /path/to/file to add files we want to commit

m git commit (format: is "new/fix/chg: [topic] My description"
m git push my_fork

m Create pull request from the github interface

m Wait for Travis to run, update the code if needed

20/ 20



