
MISP core development hands-on
exercise
Building a small nifty feature for the MISP core

Threat Sharing

CIRCL / Team MISP Project

FIRST.org/Africa CERT



Some practical things first...

If you’d like to take a peak at the main files already
implemented:
https://github.com/iglocska/misp-dev-training-cheat-sheet
Full implementation:
https://github.com/MISP/MISP/tree/dev_session/app

1 20



Let’s try to develop a feature together

Idea: Users should have the option to set alert filters for the
publish alert e-mails
By default receive all alerts as before
If a filter is set, check if the alert is interesting for us or not

2 20



How to ensure that the feature is useful for the
community at large?

Always try to think in reusable systems instead of fixing a
single issue
I Much higher chance of getting a PR merged if it doesn’t just

cover your specific use-case
I Try to stay two steps ahead, see how your feature can be

reused for other tasks

3 20



User settings - a long overdue feature

Allow users to set preferences for certain views
For high level users, all the technical details are sometimes
wasted
Simply not being interested in certain types of data points
Non-standard MISP deployments (island only MISP
instances, etc)
User pre-sets for certain settings

4 20



Objectives of the feature

User should be able to do the following with filter rules:
I set
I get
I remove
I index

Filter rules should be flexible - we do not want to anticipate
all possible settings in advance
Ensure that the system is easy to extend and reuse

5 20



Before we start with anything...

Update our MISP instance (git pull origin 2.4)
Fork github.com/MISP/MISP (via the github interface)
Add a new remote to our fork:
I via username/password auth: git remote add my_fork

https://github.com/iglocska/MISP
I via ssh: git remote add my_fork

gitgithub.com:iglocska/MISP.git
Generally a good idea to work on a new branch: git checkout
-b dev_exercise
Enable debug in MISP

6 20



Implementation

Storage:
I Single key/value table for all settings
I Each user should be able to set a single instance of a key
I Values could possible become complex, let’s use JSON!
I Add timestamping for traceability
I Consider which fields we might want to look-up frequently for

indexing

7 20



The database changes we need

The table structure:
I id int(11) auto increment //primary key
I key varchar(100) //add index!
I value text //json
I user_id int(11) //add index!
I timestamp int(11) //add index!

Tie it to into the upgrade system (app/Model/AppModel.php)
Test our upgrade process! Check the output in the audit logs

8 20



Checklist

Outline of the changes needed:
I New Controller (UserSettingsController.php)
I New Model (UserSetting.php)
I New Views (setSetting, index)
I Add new controller actions to ACL
I Update the e-mail alert system to use the functionality

9 20



Create the new Model skeleton

location: /var/www/MISP/app/Model/UserSetting.php
Create basic skeleton
Add model relationships (hasMany/BelongsTo)
Use the hooking functionality to deal with the JSON field
(beforeSave(), beforeFind())
Add a function that can be used to check if a user should get
an alert based on filters (checkPublishFilter())
Add a function to check if a user can access/modify a setting
(checkAccess())

10 20



Create the Controller skeleton

location: /var/www/MISP/app/Model/UserSetting.php
Create basic skeleton
Set pagination rules
Define CRUD functions (exceptionally, we diverge here from
the norm)
I setSetting()
I getSetting()
I index()
I delete()

11 20



Start with an API only approach at first

setSetting():
I Accepted methods: ADD / POST
I Separate handling of API / UI
I POST should create/update an entry
I GET should describe the API

12 20



getSetting / index

getSetting():
I Accepted methods: GET
I Retrieves a single setting based on either ID or setting key

and user_id
I Encode the data depending on API/UI
I Accepted methods: GET
I List all settings
I Filter user scope on demand
I Filter available scopes based on role

13 20



delete

delete():
I Accepted methods: POST / DELETE
I Deletes a single entry based on ID or setting key
I Encode the data depending on API/UI

14 20



Add the ACL functionalities

Tie functions into checkAccess():
I Check if user is allowed to execute actions and throw

exceptions if not
I Add it to: setSetting() / getSetting() / delete()

Consider that:
I Site admins have full reign
I Org admins can manage their own users
I Everyone else can self-manage

15 20



Test the functionalities

Use the REST client
Expectations
I GET on /setSetting and /delete describing our endpoints
I POST /setSetting with "key": "publish_filter", "value":

"Event.tags":"%sofacy%" should return newly added or
modified filter

I GET on /index should list our entries, GET on /getSetting
should show an individual entry

I DELETE on /delete should delete the entry

16 20



Start adding the UI components

We now have a rudimentary CRUD, let’s add some simple UI
views
I setSetting as a simple form
I index should use the parametrised generators (IndexTable)
I Add both views to the menu systems (side-menu, global

menu)
I Don’t forget about sanitisation and translations!

17 20



Add the checkPublishFilter() function to the e-
mailing

Trace the code path of the e-mail sending to understand the
process
Decide on the best place to inject our check
Don’t break the flow of the process!
What do we have access to at this point? What format are
they in?

18 20



Test if our code works correctly

Do we see any notices / errors?
Is our code easily accessible?
Consider other roles! Can users/org admins do things we
don’t want them to do?
Is our code-base breaking the default behaviour?
Is our update script working as expected?

19 20



Push our code to our fork and create a pull
request

git status to check what changed / got added
git add /path/to/file to add files we want to commit
git commit (format: is "new/fix/chg: [topic] My description"
git push my_fork
Create pull request from the github interface
Wait for Travis to run, update the code if needed

20 / 20


