Speed up persisting large number of outliers (#16649)
Recalculating the roots tuple every iteration could be very expensive, so instead let's do a topological sort.pull/16648/merge
parent
fef08cbee8
commit
1b238e8837
|
@ -0,0 +1 @@
|
||||||
|
Speed up persisting large number of outliers.
|
|
@ -88,7 +88,7 @@ from synapse.types import (
|
||||||
)
|
)
|
||||||
from synapse.types.state import StateFilter
|
from synapse.types.state import StateFilter
|
||||||
from synapse.util.async_helpers import Linearizer, concurrently_execute
|
from synapse.util.async_helpers import Linearizer, concurrently_execute
|
||||||
from synapse.util.iterutils import batch_iter, partition
|
from synapse.util.iterutils import batch_iter, partition, sorted_topologically_batched
|
||||||
from synapse.util.retryutils import NotRetryingDestination
|
from synapse.util.retryutils import NotRetryingDestination
|
||||||
from synapse.util.stringutils import shortstr
|
from synapse.util.stringutils import shortstr
|
||||||
|
|
||||||
|
@ -1669,14 +1669,13 @@ class FederationEventHandler:
|
||||||
|
|
||||||
# XXX: it might be possible to kick this process off in parallel with fetching
|
# XXX: it might be possible to kick this process off in parallel with fetching
|
||||||
# the events.
|
# the events.
|
||||||
while event_map:
|
|
||||||
# build a list of events whose auth events are not in the queue.
|
|
||||||
roots = tuple(
|
|
||||||
ev
|
|
||||||
for ev in event_map.values()
|
|
||||||
if not any(aid in event_map for aid in ev.auth_event_ids())
|
|
||||||
)
|
|
||||||
|
|
||||||
|
# We need to persist an event's auth events before the event.
|
||||||
|
auth_graph = {
|
||||||
|
ev: [event_map[e_id] for e_id in ev.auth_event_ids() if e_id in event_map]
|
||||||
|
for ev in event_map.values()
|
||||||
|
}
|
||||||
|
for roots in sorted_topologically_batched(event_map.values(), auth_graph):
|
||||||
if not roots:
|
if not roots:
|
||||||
# if *none* of the remaining events are ready, that means
|
# if *none* of the remaining events are ready, that means
|
||||||
# we have a loop. This either means a bug in our logic, or that
|
# we have a loop. This either means a bug in our logic, or that
|
||||||
|
@ -1698,9 +1697,6 @@ class FederationEventHandler:
|
||||||
|
|
||||||
await self._auth_and_persist_outliers_inner(room_id, roots)
|
await self._auth_and_persist_outliers_inner(room_id, roots)
|
||||||
|
|
||||||
for ev in roots:
|
|
||||||
del event_map[ev.event_id]
|
|
||||||
|
|
||||||
async def _auth_and_persist_outliers_inner(
|
async def _auth_and_persist_outliers_inner(
|
||||||
self, room_id: str, fetched_events: Collection[EventBase]
|
self, room_id: str, fetched_events: Collection[EventBase]
|
||||||
) -> None:
|
) -> None:
|
||||||
|
|
|
@ -135,3 +135,54 @@ def sorted_topologically(
|
||||||
degree_map[edge] -= 1
|
degree_map[edge] -= 1
|
||||||
if degree_map[edge] == 0:
|
if degree_map[edge] == 0:
|
||||||
heapq.heappush(zero_degree, edge)
|
heapq.heappush(zero_degree, edge)
|
||||||
|
|
||||||
|
|
||||||
|
def sorted_topologically_batched(
|
||||||
|
nodes: Iterable[T],
|
||||||
|
graph: Mapping[T, Collection[T]],
|
||||||
|
) -> Generator[Collection[T], None, None]:
|
||||||
|
r"""Walk the graph topologically, returning batches of nodes where all nodes
|
||||||
|
that references it have been previously returned.
|
||||||
|
|
||||||
|
For example, given the following graph:
|
||||||
|
|
||||||
|
A
|
||||||
|
/ \
|
||||||
|
B C
|
||||||
|
\ /
|
||||||
|
D
|
||||||
|
|
||||||
|
This function will return: `[[A], [B, C], [D]]`.
|
||||||
|
|
||||||
|
This function is useful for e.g. batch persisting events in an auth chain,
|
||||||
|
where we can only persist an event if all its auth events have already been
|
||||||
|
persisted.
|
||||||
|
"""
|
||||||
|
|
||||||
|
degree_map = {node: 0 for node in nodes}
|
||||||
|
reverse_graph: Dict[T, Set[T]] = {}
|
||||||
|
|
||||||
|
for node, edges in graph.items():
|
||||||
|
if node not in degree_map:
|
||||||
|
continue
|
||||||
|
|
||||||
|
for edge in set(edges):
|
||||||
|
if edge in degree_map:
|
||||||
|
degree_map[node] += 1
|
||||||
|
|
||||||
|
reverse_graph.setdefault(edge, set()).add(node)
|
||||||
|
reverse_graph.setdefault(node, set())
|
||||||
|
|
||||||
|
zero_degree = [node for node, degree in degree_map.items() if degree == 0]
|
||||||
|
|
||||||
|
while zero_degree:
|
||||||
|
new_zero_degree = []
|
||||||
|
for node in zero_degree:
|
||||||
|
for edge in reverse_graph.get(node, []):
|
||||||
|
if edge in degree_map:
|
||||||
|
degree_map[edge] -= 1
|
||||||
|
if degree_map[edge] == 0:
|
||||||
|
new_zero_degree.append(edge)
|
||||||
|
|
||||||
|
yield zero_degree
|
||||||
|
zero_degree = new_zero_degree
|
||||||
|
|
|
@ -13,7 +13,11 @@
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
from typing import Dict, Iterable, List, Sequence
|
from typing import Dict, Iterable, List, Sequence
|
||||||
|
|
||||||
from synapse.util.iterutils import chunk_seq, sorted_topologically
|
from synapse.util.iterutils import (
|
||||||
|
chunk_seq,
|
||||||
|
sorted_topologically,
|
||||||
|
sorted_topologically_batched,
|
||||||
|
)
|
||||||
|
|
||||||
from tests.unittest import TestCase
|
from tests.unittest import TestCase
|
||||||
|
|
||||||
|
@ -107,3 +111,73 @@ class SortTopologically(TestCase):
|
||||||
graph: Dict[int, List[int]] = {1: [], 2: [1], 3: [2], 4: [3, 2, 1]}
|
graph: Dict[int, List[int]] = {1: [], 2: [1], 3: [2], 4: [3, 2, 1]}
|
||||||
|
|
||||||
self.assertEqual(list(sorted_topologically([4, 3, 2, 1], graph)), [1, 2, 3, 4])
|
self.assertEqual(list(sorted_topologically([4, 3, 2, 1], graph)), [1, 2, 3, 4])
|
||||||
|
|
||||||
|
|
||||||
|
class SortTopologicallyBatched(TestCase):
|
||||||
|
"Test cases for `sorted_topologically_batched`"
|
||||||
|
|
||||||
|
def test_empty(self) -> None:
|
||||||
|
"Test that an empty graph works correctly"
|
||||||
|
|
||||||
|
graph: Dict[int, List[int]] = {}
|
||||||
|
self.assertEqual(list(sorted_topologically_batched([], graph)), [])
|
||||||
|
|
||||||
|
def test_handle_empty_graph(self) -> None:
|
||||||
|
"Test that a graph where a node doesn't have an entry is treated as empty"
|
||||||
|
|
||||||
|
graph: Dict[int, List[int]] = {}
|
||||||
|
|
||||||
|
# For disconnected nodes the output is simply sorted.
|
||||||
|
self.assertEqual(list(sorted_topologically_batched([1, 2], graph)), [[1, 2]])
|
||||||
|
|
||||||
|
def test_disconnected(self) -> None:
|
||||||
|
"Test that a graph with no edges work"
|
||||||
|
|
||||||
|
graph: Dict[int, List[int]] = {1: [], 2: []}
|
||||||
|
|
||||||
|
# For disconnected nodes the output is simply sorted.
|
||||||
|
self.assertEqual(list(sorted_topologically_batched([1, 2], graph)), [[1, 2]])
|
||||||
|
|
||||||
|
def test_linear(self) -> None:
|
||||||
|
"Test that a simple `4 -> 3 -> 2 -> 1` graph works"
|
||||||
|
|
||||||
|
graph: Dict[int, List[int]] = {1: [], 2: [1], 3: [2], 4: [3]}
|
||||||
|
|
||||||
|
self.assertEqual(
|
||||||
|
list(sorted_topologically_batched([4, 3, 2, 1], graph)),
|
||||||
|
[[1], [2], [3], [4]],
|
||||||
|
)
|
||||||
|
|
||||||
|
def test_subset(self) -> None:
|
||||||
|
"Test that only sorting a subset of the graph works"
|
||||||
|
graph: Dict[int, List[int]] = {1: [], 2: [1], 3: [2], 4: [3]}
|
||||||
|
|
||||||
|
self.assertEqual(list(sorted_topologically_batched([4, 3], graph)), [[3], [4]])
|
||||||
|
|
||||||
|
def test_fork(self) -> None:
|
||||||
|
"Test that a forked graph works"
|
||||||
|
graph: Dict[int, List[int]] = {1: [], 2: [1], 3: [1], 4: [2, 3]}
|
||||||
|
|
||||||
|
# Valid orderings are `[1, 3, 2, 4]` or `[1, 2, 3, 4]`, but we should
|
||||||
|
# always get the same one.
|
||||||
|
self.assertEqual(
|
||||||
|
list(sorted_topologically_batched([4, 3, 2, 1], graph)), [[1], [2, 3], [4]]
|
||||||
|
)
|
||||||
|
|
||||||
|
def test_duplicates(self) -> None:
|
||||||
|
"Test that a graph with duplicate edges work"
|
||||||
|
graph: Dict[int, List[int]] = {1: [], 2: [1, 1], 3: [2, 2], 4: [3]}
|
||||||
|
|
||||||
|
self.assertEqual(
|
||||||
|
list(sorted_topologically_batched([4, 3, 2, 1], graph)),
|
||||||
|
[[1], [2], [3], [4]],
|
||||||
|
)
|
||||||
|
|
||||||
|
def test_multiple_paths(self) -> None:
|
||||||
|
"Test that a graph with multiple paths between two nodes work"
|
||||||
|
graph: Dict[int, List[int]] = {1: [], 2: [1], 3: [2], 4: [3, 2, 1]}
|
||||||
|
|
||||||
|
self.assertEqual(
|
||||||
|
list(sorted_topologically_batched([4, 3, 2, 1], graph)),
|
||||||
|
[[1], [2], [3], [4]],
|
||||||
|
)
|
||||||
|
|
Loading…
Reference in New Issue