93 lines
3.1 KiB
Python
93 lines
3.1 KiB
Python
# Copyright 2020 The Matrix.org Foundation C.I.C.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from typing import Any, Dict, Iterable, Type, TypeVar
|
|
|
|
import jsonschema
|
|
from pydantic import BaseModel, ValidationError, parse_obj_as
|
|
|
|
from synapse.config._base import ConfigError
|
|
from synapse.types import JsonDict
|
|
|
|
|
|
def validate_config(
|
|
json_schema: JsonDict, config: Any, config_path: Iterable[str]
|
|
) -> None:
|
|
"""Validates a config setting against a JsonSchema definition
|
|
|
|
This can be used to validate a section of the config file against a schema
|
|
definition. If the validation fails, a ConfigError is raised with a textual
|
|
description of the problem.
|
|
|
|
Args:
|
|
json_schema: the schema to validate against
|
|
config: the configuration value to be validated
|
|
config_path: the path within the config file. This will be used as a basis
|
|
for the error message.
|
|
|
|
Raises:
|
|
ConfigError, if validation fails.
|
|
"""
|
|
try:
|
|
jsonschema.validate(config, json_schema)
|
|
except jsonschema.ValidationError as e:
|
|
raise json_error_to_config_error(e, config_path)
|
|
|
|
|
|
def json_error_to_config_error(
|
|
e: jsonschema.ValidationError, config_path: Iterable[str]
|
|
) -> ConfigError:
|
|
"""Converts a json validation error to a user-readable ConfigError
|
|
|
|
Args:
|
|
e: the exception to be converted
|
|
config_path: the path within the config file. This will be used as a basis
|
|
for the error message.
|
|
|
|
Returns:
|
|
a ConfigError
|
|
"""
|
|
# copy `config_path` before modifying it.
|
|
path = list(config_path)
|
|
for p in list(e.absolute_path):
|
|
if isinstance(p, int):
|
|
path.append("<item %i>" % p)
|
|
else:
|
|
path.append(str(p))
|
|
return ConfigError(e.message, path)
|
|
|
|
|
|
Model = TypeVar("Model", bound=BaseModel)
|
|
|
|
|
|
def parse_and_validate_mapping(
|
|
config: Any,
|
|
model_type: Type[Model],
|
|
) -> Dict[str, Model]:
|
|
"""Parse `config` as a mapping from strings to a given `Model` type.
|
|
Args:
|
|
config: The configuration data to check
|
|
model_type: The BaseModel to validate and parse against.
|
|
Returns:
|
|
Fully validated and parsed Dict[str, Model].
|
|
Raises:
|
|
ConfigError, if given improper input.
|
|
"""
|
|
try:
|
|
# type-ignore: mypy doesn't like constructing `Dict[str, model_type]` because
|
|
# `model_type` is a runtime variable. Pydantic is fine with this.
|
|
instances = parse_obj_as(Dict[str, model_type], config) # type: ignore[valid-type]
|
|
except ValidationError as e:
|
|
raise ConfigError(str(e)) from e
|
|
return instances
|