MatrixSynapse/synapse/storage/databases/main/client_ips.py

717 lines
27 KiB
Python

# Copyright 2016 OpenMarket Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from typing import TYPE_CHECKING, Dict, List, Mapping, Optional, Tuple, Union, cast
from typing_extensions import TypedDict
from synapse.metrics.background_process_metrics import wrap_as_background_process
from synapse.storage._base import SQLBaseStore
from synapse.storage.database import (
DatabasePool,
LoggingDatabaseConnection,
LoggingTransaction,
make_tuple_comparison_clause,
)
from synapse.storage.databases.main.monthly_active_users import MonthlyActiveUsersStore
from synapse.storage.types import Connection
from synapse.types import JsonDict, UserID
from synapse.util.caches.lrucache import LruCache
if TYPE_CHECKING:
from synapse.server import HomeServer
logger = logging.getLogger(__name__)
# Number of msec of granularity to store the user IP 'last seen' time. Smaller
# times give more inserts into the database even for readonly API hits
# 120 seconds == 2 minutes
LAST_SEEN_GRANULARITY = 120 * 1000
class DeviceLastConnectionInfo(TypedDict):
"""Metadata for the last connection seen for a user and device combination"""
# These types must match the columns in the `devices` table
user_id: str
device_id: str
ip: Optional[str]
user_agent: Optional[str]
last_seen: Optional[int]
class LastConnectionInfo(TypedDict):
"""Metadata for the last connection seen for an access token and IP combination"""
# These types must match the columns in the `user_ips` table
access_token: str
ip: str
user_agent: str
last_seen: int
class ClientIpBackgroundUpdateStore(SQLBaseStore):
def __init__(self, database: DatabasePool, db_conn: Connection, hs: "HomeServer"):
super().__init__(database, db_conn, hs)
self.db_pool.updates.register_background_index_update(
"user_ips_device_index",
index_name="user_ips_device_id",
table="user_ips",
columns=["user_id", "device_id", "last_seen"],
)
self.db_pool.updates.register_background_index_update(
"user_ips_last_seen_index",
index_name="user_ips_last_seen",
table="user_ips",
columns=["user_id", "last_seen"],
)
self.db_pool.updates.register_background_index_update(
"user_ips_last_seen_only_index",
index_name="user_ips_last_seen_only",
table="user_ips",
columns=["last_seen"],
)
self.db_pool.updates.register_background_update_handler(
"user_ips_analyze", self._analyze_user_ip
)
self.db_pool.updates.register_background_update_handler(
"user_ips_remove_dupes", self._remove_user_ip_dupes
)
# Register a unique index
self.db_pool.updates.register_background_index_update(
"user_ips_device_unique_index",
index_name="user_ips_user_token_ip_unique_index",
table="user_ips",
columns=["user_id", "access_token", "ip"],
unique=True,
)
# Drop the old non-unique index
self.db_pool.updates.register_background_update_handler(
"user_ips_drop_nonunique_index", self._remove_user_ip_nonunique
)
# Update the last seen info in devices.
self.db_pool.updates.register_background_update_handler(
"devices_last_seen", self._devices_last_seen_update
)
async def _remove_user_ip_nonunique(
self, progress: JsonDict, batch_size: int
) -> int:
def f(conn: LoggingDatabaseConnection) -> None:
txn = conn.cursor()
txn.execute("DROP INDEX IF EXISTS user_ips_user_ip")
txn.close()
await self.db_pool.runWithConnection(f)
await self.db_pool.updates._end_background_update(
"user_ips_drop_nonunique_index"
)
return 1
async def _analyze_user_ip(self, progress: JsonDict, batch_size: int) -> int:
# Background update to analyze user_ips table before we run the
# deduplication background update. The table may not have been analyzed
# for ages due to the table locks.
#
# This will lock out the naive upserts to user_ips while it happens, but
# the analyze should be quick (28GB table takes ~10s)
def user_ips_analyze(txn: LoggingTransaction) -> None:
txn.execute("ANALYZE user_ips")
await self.db_pool.runInteraction("user_ips_analyze", user_ips_analyze)
await self.db_pool.updates._end_background_update("user_ips_analyze")
return 1
async def _remove_user_ip_dupes(self, progress: JsonDict, batch_size: int) -> int:
# This works function works by scanning the user_ips table in batches
# based on `last_seen`. For each row in a batch it searches the rest of
# the table to see if there are any duplicates, if there are then they
# are removed and replaced with a suitable row.
# Fetch the start of the batch
begin_last_seen: int = progress.get("last_seen", 0)
def get_last_seen(txn: LoggingTransaction) -> Optional[int]:
txn.execute(
"""
SELECT last_seen FROM user_ips
WHERE last_seen > ?
ORDER BY last_seen
LIMIT 1
OFFSET ?
""",
(begin_last_seen, batch_size),
)
row = cast(Optional[Tuple[int]], txn.fetchone())
if row:
return row[0]
else:
return None
# Get a last seen that has roughly `batch_size` since `begin_last_seen`
end_last_seen = await self.db_pool.runInteraction(
"user_ips_dups_get_last_seen", get_last_seen
)
# If it returns None, then we're processing the last batch
last = end_last_seen is None
logger.info(
"Scanning for duplicate 'user_ips' rows in range: %s <= last_seen < %s",
begin_last_seen,
end_last_seen,
)
def remove(txn: LoggingTransaction) -> None:
# This works by looking at all entries in the given time span, and
# then for each (user_id, access_token, ip) tuple in that range
# checking for any duplicates in the rest of the table (via a join).
# It then only returns entries which have duplicates, and the max
# last_seen across all duplicates, which can the be used to delete
# all other duplicates.
# It is efficient due to the existence of (user_id, access_token,
# ip) and (last_seen) indices.
# Define the search space, which requires handling the last batch in
# a different way
args: Tuple[int, ...]
if last:
clause = "? <= last_seen"
args = (begin_last_seen,)
else:
assert end_last_seen is not None
clause = "? <= last_seen AND last_seen < ?"
args = (begin_last_seen, end_last_seen)
# (Note: The DISTINCT in the inner query is important to ensure that
# the COUNT(*) is accurate, otherwise double counting may happen due
# to the join effectively being a cross product)
txn.execute(
"""
SELECT user_id, access_token, ip,
MAX(device_id), MAX(user_agent), MAX(last_seen),
COUNT(*)
FROM (
SELECT DISTINCT user_id, access_token, ip
FROM user_ips
WHERE {}
) c
INNER JOIN user_ips USING (user_id, access_token, ip)
GROUP BY user_id, access_token, ip
HAVING count(*) > 1
""".format(
clause
),
args,
)
res = cast(
List[Tuple[str, str, str, Optional[str], str, int, int]], txn.fetchall()
)
# We've got some duplicates
for i in res:
user_id, access_token, ip, device_id, user_agent, last_seen, count = i
# We want to delete the duplicates so we end up with only a
# single row.
#
# The naive way of doing this would be just to delete all rows
# and reinsert a constructed row. However, if there are a lot of
# duplicate rows this can cause the table to grow a lot, which
# can be problematic in two ways:
# 1. If user_ips is already large then this can cause the
# table to rapidly grow, potentially filling the disk.
# 2. Reinserting a lot of rows can confuse the table
# statistics for postgres, causing it to not use the
# correct indices for the query above, resulting in a full
# table scan. This is incredibly slow for large tables and
# can kill database performance. (This seems to mainly
# happen for the last query where the clause is simply `? <
# last_seen`)
#
# So instead we want to delete all but *one* of the duplicate
# rows. That is hard to do reliably, so we cheat and do a two
# step process:
# 1. Delete all rows with a last_seen strictly less than the
# max last_seen. This hopefully results in deleting all but
# one row the majority of the time, but there may be
# duplicate last_seen
# 2. If multiple rows remain, we fall back to the naive method
# and simply delete all rows and reinsert.
#
# Note that this relies on no new duplicate rows being inserted,
# but if that is happening then this entire process is futile
# anyway.
# Do step 1:
txn.execute(
"""
DELETE FROM user_ips
WHERE user_id = ? AND access_token = ? AND ip = ? AND last_seen < ?
""",
(user_id, access_token, ip, last_seen),
)
if txn.rowcount == count - 1:
# We deleted all but one of the duplicate rows, i.e. there
# is exactly one remaining and so there is nothing left to
# do.
continue
elif txn.rowcount >= count:
raise Exception(
"We deleted more duplicate rows from 'user_ips' than expected"
)
# The previous step didn't delete enough rows, so we fallback to
# step 2:
# Drop all the duplicates
txn.execute(
"""
DELETE FROM user_ips
WHERE user_id = ? AND access_token = ? AND ip = ?
""",
(user_id, access_token, ip),
)
# Add in one to be the last_seen
txn.execute(
"""
INSERT INTO user_ips
(user_id, access_token, ip, device_id, user_agent, last_seen)
VALUES (?, ?, ?, ?, ?, ?)
""",
(user_id, access_token, ip, device_id, user_agent, last_seen),
)
self.db_pool.updates._background_update_progress_txn(
txn, "user_ips_remove_dupes", {"last_seen": end_last_seen}
)
await self.db_pool.runInteraction("user_ips_dups_remove", remove)
if last:
await self.db_pool.updates._end_background_update("user_ips_remove_dupes")
return batch_size
async def _devices_last_seen_update(
self, progress: JsonDict, batch_size: int
) -> int:
"""Background update to insert last seen info into devices table"""
last_user_id: str = progress.get("last_user_id", "")
last_device_id: str = progress.get("last_device_id", "")
def _devices_last_seen_update_txn(txn: LoggingTransaction) -> int:
# This consists of two queries:
#
# 1. The sub-query searches for the next N devices and joins
# against user_ips to find the max last_seen associated with
# that device.
# 2. The outer query then joins again against user_ips on
# user/device/last_seen. This *should* hopefully only
# return one row, but if it does return more than one then
# we'll just end up updating the same device row multiple
# times, which is fine.
where_args: List[Union[str, int]]
where_clause, where_args = make_tuple_comparison_clause(
[("user_id", last_user_id), ("device_id", last_device_id)],
)
sql = """
SELECT
last_seen, ip, user_agent, user_id, device_id
FROM (
SELECT
user_id, device_id, MAX(u.last_seen) AS last_seen
FROM devices
INNER JOIN user_ips AS u USING (user_id, device_id)
WHERE %(where_clause)s
GROUP BY user_id, device_id
ORDER BY user_id ASC, device_id ASC
LIMIT ?
) c
INNER JOIN user_ips AS u USING (user_id, device_id, last_seen)
""" % {
"where_clause": where_clause
}
txn.execute(sql, where_args + [batch_size])
rows = cast(List[Tuple[int, str, str, str, str]], txn.fetchall())
if not rows:
return 0
sql = """
UPDATE devices
SET last_seen = ?, ip = ?, user_agent = ?
WHERE user_id = ? AND device_id = ?
"""
txn.execute_batch(sql, rows)
_, _, _, user_id, device_id = rows[-1]
self.db_pool.updates._background_update_progress_txn(
txn,
"devices_last_seen",
{"last_user_id": user_id, "last_device_id": device_id},
)
return len(rows)
updated = await self.db_pool.runInteraction(
"_devices_last_seen_update", _devices_last_seen_update_txn
)
if not updated:
await self.db_pool.updates._end_background_update("devices_last_seen")
return updated
class ClientIpWorkerStore(ClientIpBackgroundUpdateStore):
def __init__(self, database: DatabasePool, db_conn: Connection, hs: "HomeServer"):
super().__init__(database, db_conn, hs)
self.user_ips_max_age = hs.config.server.user_ips_max_age
if hs.config.worker.run_background_tasks and self.user_ips_max_age:
self._clock.looping_call(self._prune_old_user_ips, 5 * 1000)
@wrap_as_background_process("prune_old_user_ips")
async def _prune_old_user_ips(self) -> None:
"""Removes entries in user IPs older than the configured period."""
if self.user_ips_max_age is None:
# Nothing to do
return
if not await self.db_pool.updates.has_completed_background_update(
"devices_last_seen"
):
# Only start pruning if we have finished populating the devices
# last seen info.
return
# We do a slightly funky SQL delete to ensure we don't try and delete
# too much at once (as the table may be very large from before we
# started pruning).
#
# This works by finding the max last_seen that is less than the given
# time, but has no more than N rows before it, deleting all rows with
# a lesser last_seen time. (We COALESCE so that the sub-SELECT always
# returns exactly one row).
sql = """
DELETE FROM user_ips
WHERE last_seen <= (
SELECT COALESCE(MAX(last_seen), -1)
FROM (
SELECT last_seen FROM user_ips
WHERE last_seen <= ?
ORDER BY last_seen ASC
LIMIT 5000
) AS u
)
"""
timestamp = self._clock.time_msec() - self.user_ips_max_age
def _prune_old_user_ips_txn(txn: LoggingTransaction) -> None:
txn.execute(sql, (timestamp,))
await self.db_pool.runInteraction(
"_prune_old_user_ips", _prune_old_user_ips_txn
)
async def get_last_client_ip_by_device(
self, user_id: str, device_id: Optional[str]
) -> Dict[Tuple[str, str], DeviceLastConnectionInfo]:
"""For each device_id listed, give the user_ip it was last seen on.
The result might be slightly out of date as client IPs are inserted in batches.
Args:
user_id: The user to fetch devices for.
device_id: If None fetches all devices for the user
Returns:
A dictionary mapping a tuple of (user_id, device_id) to dicts, with
keys giving the column names from the devices table.
"""
keyvalues = {"user_id": user_id}
if device_id is not None:
keyvalues["device_id"] = device_id
res = cast(
List[DeviceLastConnectionInfo],
await self.db_pool.simple_select_list(
table="devices",
keyvalues=keyvalues,
retcols=("user_id", "ip", "user_agent", "device_id", "last_seen"),
),
)
return {(d["user_id"], d["device_id"]): d for d in res}
async def get_user_ip_and_agents(
self, user: UserID, since_ts: int = 0
) -> List[LastConnectionInfo]:
"""Fetch the IPs and user agents for a user since the given timestamp.
The result might be slightly out of date as client IPs are inserted in batches.
Args:
user: The user for which to fetch IP addresses and user agents.
since_ts: The timestamp after which to fetch IP addresses and user agents,
in milliseconds.
Returns:
A list of dictionaries, each containing:
* `access_token`: The access token used.
* `ip`: The IP address used.
* `user_agent`: The last user agent seen for this access token and IP
address combination.
* `last_seen`: The timestamp at which this access token and IP address
combination was last seen, in milliseconds.
Only the latest user agent for each access token and IP address combination
is available.
"""
user_id = user.to_string()
def get_recent(txn: LoggingTransaction) -> List[Tuple[str, str, str, int]]:
txn.execute(
"""
SELECT access_token, ip, user_agent, last_seen FROM user_ips
WHERE last_seen >= ? AND user_id = ?
ORDER BY last_seen
DESC
""",
(since_ts, user_id),
)
return cast(List[Tuple[str, str, str, int]], txn.fetchall())
rows = await self.db_pool.runInteraction(
desc="get_user_ip_and_agents", func=get_recent
)
return [
{
"access_token": access_token,
"ip": ip,
"user_agent": user_agent,
"last_seen": last_seen,
}
for access_token, ip, user_agent, last_seen in rows
]
class ClientIpStore(ClientIpWorkerStore, MonthlyActiveUsersStore):
def __init__(self, database: DatabasePool, db_conn: Connection, hs: "HomeServer"):
# (user_id, access_token, ip,) -> last_seen
self.client_ip_last_seen = LruCache[Tuple[str, str, str], int](
cache_name="client_ip_last_seen", max_size=50000
)
super().__init__(database, db_conn, hs)
# (user_id, access_token, ip,) -> (user_agent, device_id, last_seen)
self._batch_row_update: Dict[
Tuple[str, str, str], Tuple[str, Optional[str], int]
] = {}
self._client_ip_looper = self._clock.looping_call(
self._update_client_ips_batch, 5 * 1000
)
self.hs.get_reactor().addSystemEventTrigger(
"before", "shutdown", self._update_client_ips_batch
)
async def insert_client_ip(
self,
user_id: str,
access_token: str,
ip: str,
user_agent: str,
device_id: Optional[str],
now: Optional[int] = None,
) -> None:
if not now:
now = int(self._clock.time_msec())
key = (user_id, access_token, ip)
try:
last_seen = self.client_ip_last_seen.get(key)
except KeyError:
last_seen = None
await self.populate_monthly_active_users(user_id)
# Rate-limited inserts
if last_seen is not None and (now - last_seen) < LAST_SEEN_GRANULARITY:
return
self.client_ip_last_seen.set(key, now)
self._batch_row_update[key] = (user_agent, device_id, now)
@wrap_as_background_process("update_client_ips")
async def _update_client_ips_batch(self) -> None:
# If the DB pool has already terminated, don't try updating
if not self.db_pool.is_running():
return
to_update = self._batch_row_update
self._batch_row_update = {}
await self.db_pool.runInteraction(
"_update_client_ips_batch", self._update_client_ips_batch_txn, to_update
)
def _update_client_ips_batch_txn(
self,
txn: LoggingTransaction,
to_update: Mapping[Tuple[str, str, str], Tuple[str, Optional[str], int]],
) -> None:
if "user_ips" in self.db_pool._unsafe_to_upsert_tables or (
not self.database_engine.can_native_upsert
):
self.database_engine.lock_table(txn, "user_ips")
for entry in to_update.items():
(user_id, access_token, ip), (user_agent, device_id, last_seen) = entry
self.db_pool.simple_upsert_txn(
txn,
table="user_ips",
keyvalues={"user_id": user_id, "access_token": access_token, "ip": ip},
values={
"user_agent": user_agent,
"device_id": device_id,
"last_seen": last_seen,
},
lock=False,
)
# Technically an access token might not be associated with
# a device so we need to check.
if device_id:
# this is always an update rather than an upsert: the row should
# already exist, and if it doesn't, that may be because it has been
# deleted, and we don't want to re-create it.
self.db_pool.simple_update_txn(
txn,
table="devices",
keyvalues={"user_id": user_id, "device_id": device_id},
updatevalues={
"user_agent": user_agent,
"last_seen": last_seen,
"ip": ip,
},
)
async def get_last_client_ip_by_device(
self, user_id: str, device_id: Optional[str]
) -> Dict[Tuple[str, str], DeviceLastConnectionInfo]:
"""For each device_id listed, give the user_ip it was last seen on
Args:
user_id: The user to fetch devices for.
device_id: If None fetches all devices for the user
Returns:
A dictionary mapping a tuple of (user_id, device_id) to dicts, with
keys giving the column names from the devices table.
"""
ret = await super().get_last_client_ip_by_device(user_id, device_id)
# Update what is retrieved from the database with data which is pending
# insertion, as if it has already been stored in the database.
for key in self._batch_row_update:
uid, _access_token, ip = key
if uid == user_id:
user_agent, did, last_seen = self._batch_row_update[key]
if did is None:
# These updates don't make it to the `devices` table
continue
if not device_id or did == device_id:
ret[(user_id, did)] = {
"user_id": user_id,
"ip": ip,
"user_agent": user_agent,
"device_id": did,
"last_seen": last_seen,
}
return ret
async def get_user_ip_and_agents(
self, user: UserID, since_ts: int = 0
) -> List[LastConnectionInfo]:
"""Fetch the IPs and user agents for a user since the given timestamp.
Args:
user: The user for which to fetch IP addresses and user agents.
since_ts: The timestamp after which to fetch IP addresses and user agents,
in milliseconds.
Returns:
A list of dictionaries, each containing:
* `access_token`: The access token used.
* `ip`: The IP address used.
* `user_agent`: The last user agent seen for this access token and IP
address combination.
* `last_seen`: The timestamp at which this access token and IP address
combination was last seen, in milliseconds.
Only the latest user agent for each access token and IP address combination
is available.
"""
results: Dict[Tuple[str, str], LastConnectionInfo] = {
(connection["access_token"], connection["ip"]): connection
for connection in await super().get_user_ip_and_agents(user, since_ts)
}
# Overlay data that is pending insertion on top of the results from the
# database.
user_id = user.to_string()
for key in self._batch_row_update:
uid, access_token, ip = key
if uid == user_id:
user_agent, _, last_seen = self._batch_row_update[key]
if last_seen >= since_ts:
results[(access_token, ip)] = {
"access_token": access_token,
"ip": ip,
"user_agent": user_agent,
"last_seen": last_seen,
}
return list(results.values())