1778 lines
60 KiB
Python
1778 lines
60 KiB
Python
# -*- coding: utf-8 -*-
|
|
# Copyright 2014-2016 OpenMarket Ltd
|
|
# Copyright 2017-2018 New Vector Ltd
|
|
# Copyright 2019 The Matrix.org Foundation C.I.C.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import logging
|
|
import time
|
|
from sys import intern
|
|
from time import monotonic as monotonic_time
|
|
from typing import (
|
|
Any,
|
|
Callable,
|
|
Dict,
|
|
Iterable,
|
|
Iterator,
|
|
List,
|
|
Optional,
|
|
Tuple,
|
|
TypeVar,
|
|
Union,
|
|
)
|
|
|
|
from prometheus_client import Histogram
|
|
|
|
from twisted.enterprise import adbapi
|
|
from twisted.internet import defer
|
|
|
|
from synapse.api.errors import StoreError
|
|
from synapse.config.database import DatabaseConnectionConfig
|
|
from synapse.logging.context import (
|
|
LoggingContext,
|
|
LoggingContextOrSentinel,
|
|
current_context,
|
|
make_deferred_yieldable,
|
|
)
|
|
from synapse.metrics.background_process_metrics import run_as_background_process
|
|
from synapse.storage.background_updates import BackgroundUpdater
|
|
from synapse.storage.engines import BaseDatabaseEngine, PostgresEngine, Sqlite3Engine
|
|
from synapse.storage.types import Connection, Cursor
|
|
from synapse.types import Collection
|
|
|
|
# python 3 does not have a maximum int value
|
|
MAX_TXN_ID = 2 ** 63 - 1
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
sql_logger = logging.getLogger("synapse.storage.SQL")
|
|
transaction_logger = logging.getLogger("synapse.storage.txn")
|
|
perf_logger = logging.getLogger("synapse.storage.TIME")
|
|
|
|
sql_scheduling_timer = Histogram("synapse_storage_schedule_time", "sec")
|
|
|
|
sql_query_timer = Histogram("synapse_storage_query_time", "sec", ["verb"])
|
|
sql_txn_timer = Histogram("synapse_storage_transaction_time", "sec", ["desc"])
|
|
|
|
|
|
# Unique indexes which have been added in background updates. Maps from table name
|
|
# to the name of the background update which added the unique index to that table.
|
|
#
|
|
# This is used by the upsert logic to figure out which tables are safe to do a proper
|
|
# UPSERT on: until the relevant background update has completed, we
|
|
# have to emulate an upsert by locking the table.
|
|
#
|
|
UNIQUE_INDEX_BACKGROUND_UPDATES = {
|
|
"user_ips": "user_ips_device_unique_index",
|
|
"device_lists_remote_extremeties": "device_lists_remote_extremeties_unique_idx",
|
|
"device_lists_remote_cache": "device_lists_remote_cache_unique_idx",
|
|
"event_search": "event_search_event_id_idx",
|
|
}
|
|
|
|
|
|
def make_pool(
|
|
reactor, db_config: DatabaseConnectionConfig, engine: BaseDatabaseEngine
|
|
) -> adbapi.ConnectionPool:
|
|
"""Get the connection pool for the database.
|
|
"""
|
|
|
|
return adbapi.ConnectionPool(
|
|
db_config.config["name"],
|
|
cp_reactor=reactor,
|
|
cp_openfun=engine.on_new_connection,
|
|
**db_config.config.get("args", {})
|
|
)
|
|
|
|
|
|
def make_conn(
|
|
db_config: DatabaseConnectionConfig, engine: BaseDatabaseEngine
|
|
) -> Connection:
|
|
"""Make a new connection to the database and return it.
|
|
|
|
Returns:
|
|
Connection
|
|
"""
|
|
|
|
db_params = {
|
|
k: v
|
|
for k, v in db_config.config.get("args", {}).items()
|
|
if not k.startswith("cp_")
|
|
}
|
|
db_conn = engine.module.connect(**db_params)
|
|
engine.on_new_connection(db_conn)
|
|
return db_conn
|
|
|
|
|
|
# The type of entry which goes on our after_callbacks and exception_callbacks lists.
|
|
#
|
|
# Python 3.5.2 doesn't support Callable with an ellipsis, so we wrap it in quotes so
|
|
# that mypy sees the type but the runtime python doesn't.
|
|
_CallbackListEntry = Tuple["Callable[..., None]", Iterable[Any], Dict[str, Any]]
|
|
|
|
|
|
class LoggingTransaction:
|
|
"""An object that almost-transparently proxies for the 'txn' object
|
|
passed to the constructor. Adds logging and metrics to the .execute()
|
|
method.
|
|
|
|
Args:
|
|
txn: The database transaction object to wrap.
|
|
name: The name of this transactions for logging.
|
|
database_engine
|
|
after_callbacks: A list that callbacks will be appended to
|
|
that have been added by `call_after` which should be run on
|
|
successful completion of the transaction. None indicates that no
|
|
callbacks should be allowed to be scheduled to run.
|
|
exception_callbacks: A list that callbacks will be appended
|
|
to that have been added by `call_on_exception` which should be run
|
|
if transaction ends with an error. None indicates that no callbacks
|
|
should be allowed to be scheduled to run.
|
|
"""
|
|
|
|
__slots__ = [
|
|
"txn",
|
|
"name",
|
|
"database_engine",
|
|
"after_callbacks",
|
|
"exception_callbacks",
|
|
]
|
|
|
|
def __init__(
|
|
self,
|
|
txn: Cursor,
|
|
name: str,
|
|
database_engine: BaseDatabaseEngine,
|
|
after_callbacks: Optional[List[_CallbackListEntry]] = None,
|
|
exception_callbacks: Optional[List[_CallbackListEntry]] = None,
|
|
):
|
|
self.txn = txn
|
|
self.name = name
|
|
self.database_engine = database_engine
|
|
self.after_callbacks = after_callbacks
|
|
self.exception_callbacks = exception_callbacks
|
|
|
|
def call_after(self, callback: "Callable[..., None]", *args: Any, **kwargs: Any):
|
|
"""Call the given callback on the main twisted thread after the
|
|
transaction has finished. Used to invalidate the caches on the
|
|
correct thread.
|
|
"""
|
|
# if self.after_callbacks is None, that means that whatever constructed the
|
|
# LoggingTransaction isn't expecting there to be any callbacks; assert that
|
|
# is not the case.
|
|
assert self.after_callbacks is not None
|
|
self.after_callbacks.append((callback, args, kwargs))
|
|
|
|
def call_on_exception(
|
|
self, callback: "Callable[..., None]", *args: Any, **kwargs: Any
|
|
):
|
|
# if self.exception_callbacks is None, that means that whatever constructed the
|
|
# LoggingTransaction isn't expecting there to be any callbacks; assert that
|
|
# is not the case.
|
|
assert self.exception_callbacks is not None
|
|
self.exception_callbacks.append((callback, args, kwargs))
|
|
|
|
def fetchall(self) -> List[Tuple]:
|
|
return self.txn.fetchall()
|
|
|
|
def fetchone(self) -> Tuple:
|
|
return self.txn.fetchone()
|
|
|
|
def __iter__(self) -> Iterator[Tuple]:
|
|
return self.txn.__iter__()
|
|
|
|
@property
|
|
def rowcount(self) -> int:
|
|
return self.txn.rowcount
|
|
|
|
@property
|
|
def description(self) -> Any:
|
|
return self.txn.description
|
|
|
|
def execute_batch(self, sql: str, args: Iterable[Iterable[Any]]) -> None:
|
|
if isinstance(self.database_engine, PostgresEngine):
|
|
from psycopg2.extras import execute_batch # type: ignore
|
|
|
|
self._do_execute(lambda *x: execute_batch(self.txn, *x), sql, args)
|
|
else:
|
|
for val in args:
|
|
self.execute(sql, val)
|
|
|
|
def execute(self, sql: str, *args: Any) -> None:
|
|
self._do_execute(self.txn.execute, sql, *args)
|
|
|
|
def executemany(self, sql: str, *args: Any) -> None:
|
|
self._do_execute(self.txn.executemany, sql, *args)
|
|
|
|
def _make_sql_one_line(self, sql: str) -> str:
|
|
"Strip newlines out of SQL so that the loggers in the DB are on one line"
|
|
return " ".join(line.strip() for line in sql.splitlines() if line.strip())
|
|
|
|
def _do_execute(self, func, sql: str, *args: Any) -> None:
|
|
sql = self._make_sql_one_line(sql)
|
|
|
|
# TODO(paul): Maybe use 'info' and 'debug' for values?
|
|
sql_logger.debug("[SQL] {%s} %s", self.name, sql)
|
|
|
|
sql = self.database_engine.convert_param_style(sql)
|
|
if args:
|
|
try:
|
|
sql_logger.debug("[SQL values] {%s} %r", self.name, args[0])
|
|
except Exception:
|
|
# Don't let logging failures stop SQL from working
|
|
pass
|
|
|
|
start = time.time()
|
|
|
|
try:
|
|
return func(sql, *args)
|
|
except Exception as e:
|
|
sql_logger.debug("[SQL FAIL] {%s} %s", self.name, e)
|
|
raise
|
|
finally:
|
|
secs = time.time() - start
|
|
sql_logger.debug("[SQL time] {%s} %f sec", self.name, secs)
|
|
sql_query_timer.labels(sql.split()[0]).observe(secs)
|
|
|
|
def close(self) -> None:
|
|
self.txn.close()
|
|
|
|
|
|
class PerformanceCounters(object):
|
|
def __init__(self):
|
|
self.current_counters = {}
|
|
self.previous_counters = {}
|
|
|
|
def update(self, key: str, duration_secs: float) -> None:
|
|
count, cum_time = self.current_counters.get(key, (0, 0))
|
|
count += 1
|
|
cum_time += duration_secs
|
|
self.current_counters[key] = (count, cum_time)
|
|
|
|
def interval(self, interval_duration_secs: float, limit: int = 3) -> str:
|
|
counters = []
|
|
for name, (count, cum_time) in self.current_counters.items():
|
|
prev_count, prev_time = self.previous_counters.get(name, (0, 0))
|
|
counters.append(
|
|
(
|
|
(cum_time - prev_time) / interval_duration_secs,
|
|
count - prev_count,
|
|
name,
|
|
)
|
|
)
|
|
|
|
self.previous_counters = dict(self.current_counters)
|
|
|
|
counters.sort(reverse=True)
|
|
|
|
top_n_counters = ", ".join(
|
|
"%s(%d): %.3f%%" % (name, count, 100 * ratio)
|
|
for ratio, count, name in counters[:limit]
|
|
)
|
|
|
|
return top_n_counters
|
|
|
|
|
|
R = TypeVar("R")
|
|
|
|
|
|
class DatabasePool(object):
|
|
"""Wraps a single physical database and connection pool.
|
|
|
|
A single database may be used by multiple data stores.
|
|
"""
|
|
|
|
_TXN_ID = 0
|
|
|
|
def __init__(
|
|
self, hs, database_config: DatabaseConnectionConfig, engine: BaseDatabaseEngine
|
|
):
|
|
self.hs = hs
|
|
self._clock = hs.get_clock()
|
|
self._database_config = database_config
|
|
self._db_pool = make_pool(hs.get_reactor(), database_config, engine)
|
|
|
|
self.updates = BackgroundUpdater(hs, self)
|
|
|
|
self._previous_txn_total_time = 0.0
|
|
self._current_txn_total_time = 0.0
|
|
self._previous_loop_ts = 0.0
|
|
|
|
# TODO(paul): These can eventually be removed once the metrics code
|
|
# is running in mainline, and we have some nice monitoring frontends
|
|
# to watch it
|
|
self._txn_perf_counters = PerformanceCounters()
|
|
|
|
self.engine = engine
|
|
|
|
# A set of tables that are not safe to use native upserts in.
|
|
self._unsafe_to_upsert_tables = set(UNIQUE_INDEX_BACKGROUND_UPDATES.keys())
|
|
|
|
# We add the user_directory_search table to the blacklist on SQLite
|
|
# because the existing search table does not have an index, making it
|
|
# unsafe to use native upserts.
|
|
if isinstance(self.engine, Sqlite3Engine):
|
|
self._unsafe_to_upsert_tables.add("user_directory_search")
|
|
|
|
if self.engine.can_native_upsert:
|
|
# Check ASAP (and then later, every 1s) to see if we have finished
|
|
# background updates of tables that aren't safe to update.
|
|
self._clock.call_later(
|
|
0.0,
|
|
run_as_background_process,
|
|
"upsert_safety_check",
|
|
self._check_safe_to_upsert,
|
|
)
|
|
|
|
def is_running(self) -> bool:
|
|
"""Is the database pool currently running
|
|
"""
|
|
return self._db_pool.running
|
|
|
|
async def _check_safe_to_upsert(self) -> None:
|
|
"""
|
|
Is it safe to use native UPSERT?
|
|
|
|
If there are background updates, we will need to wait, as they may be
|
|
the addition of indexes that set the UNIQUE constraint that we require.
|
|
|
|
If the background updates have not completed, wait 15 sec and check again.
|
|
"""
|
|
updates = await self.simple_select_list(
|
|
"background_updates",
|
|
keyvalues=None,
|
|
retcols=["update_name"],
|
|
desc="check_background_updates",
|
|
)
|
|
updates = [x["update_name"] for x in updates]
|
|
|
|
for table, update_name in UNIQUE_INDEX_BACKGROUND_UPDATES.items():
|
|
if update_name not in updates:
|
|
logger.debug("Now safe to upsert in %s", table)
|
|
self._unsafe_to_upsert_tables.discard(table)
|
|
|
|
# If there's any updates still running, reschedule to run.
|
|
if updates:
|
|
self._clock.call_later(
|
|
15.0,
|
|
run_as_background_process,
|
|
"upsert_safety_check",
|
|
self._check_safe_to_upsert,
|
|
)
|
|
|
|
def start_profiling(self) -> None:
|
|
self._previous_loop_ts = monotonic_time()
|
|
|
|
def loop():
|
|
curr = self._current_txn_total_time
|
|
prev = self._previous_txn_total_time
|
|
self._previous_txn_total_time = curr
|
|
|
|
time_now = monotonic_time()
|
|
time_then = self._previous_loop_ts
|
|
self._previous_loop_ts = time_now
|
|
|
|
duration = time_now - time_then
|
|
ratio = (curr - prev) / duration
|
|
|
|
top_three_counters = self._txn_perf_counters.interval(duration, limit=3)
|
|
|
|
perf_logger.debug(
|
|
"Total database time: %.3f%% {%s}", ratio * 100, top_three_counters
|
|
)
|
|
|
|
self._clock.looping_call(loop, 10000)
|
|
|
|
def new_transaction(
|
|
self,
|
|
conn: Connection,
|
|
desc: str,
|
|
after_callbacks: List[_CallbackListEntry],
|
|
exception_callbacks: List[_CallbackListEntry],
|
|
func: "Callable[..., R]",
|
|
*args: Any,
|
|
**kwargs: Any
|
|
) -> R:
|
|
start = monotonic_time()
|
|
txn_id = self._TXN_ID
|
|
|
|
# We don't really need these to be unique, so lets stop it from
|
|
# growing really large.
|
|
self._TXN_ID = (self._TXN_ID + 1) % (MAX_TXN_ID)
|
|
|
|
name = "%s-%x" % (desc, txn_id)
|
|
|
|
transaction_logger.debug("[TXN START] {%s}", name)
|
|
|
|
try:
|
|
i = 0
|
|
N = 5
|
|
while True:
|
|
cursor = LoggingTransaction(
|
|
conn.cursor(),
|
|
name,
|
|
self.engine,
|
|
after_callbacks,
|
|
exception_callbacks,
|
|
)
|
|
try:
|
|
r = func(cursor, *args, **kwargs)
|
|
conn.commit()
|
|
return r
|
|
except self.engine.module.OperationalError as e:
|
|
# This can happen if the database disappears mid
|
|
# transaction.
|
|
transaction_logger.warning(
|
|
"[TXN OPERROR] {%s} %s %d/%d", name, e, i, N,
|
|
)
|
|
if i < N:
|
|
i += 1
|
|
try:
|
|
conn.rollback()
|
|
except self.engine.module.Error as e1:
|
|
transaction_logger.warning("[TXN EROLL] {%s} %s", name, e1)
|
|
continue
|
|
raise
|
|
except self.engine.module.DatabaseError as e:
|
|
if self.engine.is_deadlock(e):
|
|
transaction_logger.warning(
|
|
"[TXN DEADLOCK] {%s} %d/%d", name, i, N
|
|
)
|
|
if i < N:
|
|
i += 1
|
|
try:
|
|
conn.rollback()
|
|
except self.engine.module.Error as e1:
|
|
transaction_logger.warning(
|
|
"[TXN EROLL] {%s} %s", name, e1,
|
|
)
|
|
continue
|
|
raise
|
|
finally:
|
|
# we're either about to retry with a new cursor, or we're about to
|
|
# release the connection. Once we release the connection, it could
|
|
# get used for another query, which might do a conn.rollback().
|
|
#
|
|
# In the latter case, even though that probably wouldn't affect the
|
|
# results of this transaction, python's sqlite will reset all
|
|
# statements on the connection [1], which will make our cursor
|
|
# invalid [2].
|
|
#
|
|
# In any case, continuing to read rows after commit()ing seems
|
|
# dubious from the PoV of ACID transactional semantics
|
|
# (sqlite explicitly says that once you commit, you may see rows
|
|
# from subsequent updates.)
|
|
#
|
|
# In psycopg2, cursors are essentially a client-side fabrication -
|
|
# all the data is transferred to the client side when the statement
|
|
# finishes executing - so in theory we could go on streaming results
|
|
# from the cursor, but attempting to do so would make us
|
|
# incompatible with sqlite, so let's make sure we're not doing that
|
|
# by closing the cursor.
|
|
#
|
|
# (*named* cursors in psycopg2 are different and are proper server-
|
|
# side things, but (a) we don't use them and (b) they are implicitly
|
|
# closed by ending the transaction anyway.)
|
|
#
|
|
# In short, if we haven't finished with the cursor yet, that's a
|
|
# problem waiting to bite us.
|
|
#
|
|
# TL;DR: we're done with the cursor, so we can close it.
|
|
#
|
|
# [1]: https://github.com/python/cpython/blob/v3.8.0/Modules/_sqlite/connection.c#L465
|
|
# [2]: https://github.com/python/cpython/blob/v3.8.0/Modules/_sqlite/cursor.c#L236
|
|
cursor.close()
|
|
except Exception as e:
|
|
transaction_logger.debug("[TXN FAIL] {%s} %s", name, e)
|
|
raise
|
|
finally:
|
|
end = monotonic_time()
|
|
duration = end - start
|
|
|
|
current_context().add_database_transaction(duration)
|
|
|
|
transaction_logger.debug("[TXN END] {%s} %f sec", name, duration)
|
|
|
|
self._current_txn_total_time += duration
|
|
self._txn_perf_counters.update(desc, duration)
|
|
sql_txn_timer.labels(desc).observe(duration)
|
|
|
|
@defer.inlineCallbacks
|
|
def runInteraction(self, desc: str, func: Callable, *args: Any, **kwargs: Any):
|
|
"""Starts a transaction on the database and runs a given function
|
|
|
|
Arguments:
|
|
desc: description of the transaction, for logging and metrics
|
|
func: callback function, which will be called with a
|
|
database transaction (twisted.enterprise.adbapi.Transaction) as
|
|
its first argument, followed by `args` and `kwargs`.
|
|
|
|
args: positional args to pass to `func`
|
|
kwargs: named args to pass to `func`
|
|
|
|
Returns:
|
|
Deferred: The result of func
|
|
"""
|
|
after_callbacks = [] # type: List[_CallbackListEntry]
|
|
exception_callbacks = [] # type: List[_CallbackListEntry]
|
|
|
|
if not current_context():
|
|
logger.warning("Starting db txn '%s' from sentinel context", desc)
|
|
|
|
try:
|
|
result = yield defer.ensureDeferred(
|
|
self.runWithConnection(
|
|
self.new_transaction,
|
|
desc,
|
|
after_callbacks,
|
|
exception_callbacks,
|
|
func,
|
|
*args,
|
|
**kwargs
|
|
)
|
|
)
|
|
|
|
for after_callback, after_args, after_kwargs in after_callbacks:
|
|
after_callback(*after_args, **after_kwargs)
|
|
except: # noqa: E722, as we reraise the exception this is fine.
|
|
for after_callback, after_args, after_kwargs in exception_callbacks:
|
|
after_callback(*after_args, **after_kwargs)
|
|
raise
|
|
|
|
return result
|
|
|
|
async def runWithConnection(
|
|
self, func: "Callable[..., R]", *args: Any, **kwargs: Any
|
|
) -> R:
|
|
"""Wraps the .runWithConnection() method on the underlying db_pool.
|
|
|
|
Arguments:
|
|
func: callback function, which will be called with a
|
|
database connection (twisted.enterprise.adbapi.Connection) as
|
|
its first argument, followed by `args` and `kwargs`.
|
|
args: positional args to pass to `func`
|
|
kwargs: named args to pass to `func`
|
|
|
|
Returns:
|
|
The result of func
|
|
"""
|
|
parent_context = current_context() # type: Optional[LoggingContextOrSentinel]
|
|
if not parent_context:
|
|
logger.warning(
|
|
"Starting db connection from sentinel context: metrics will be lost"
|
|
)
|
|
parent_context = None
|
|
|
|
start_time = monotonic_time()
|
|
|
|
def inner_func(conn, *args, **kwargs):
|
|
with LoggingContext("runWithConnection", parent_context) as context:
|
|
sched_duration_sec = monotonic_time() - start_time
|
|
sql_scheduling_timer.observe(sched_duration_sec)
|
|
context.add_database_scheduled(sched_duration_sec)
|
|
|
|
if self.engine.is_connection_closed(conn):
|
|
logger.debug("Reconnecting closed database connection")
|
|
conn.reconnect()
|
|
|
|
return func(conn, *args, **kwargs)
|
|
|
|
return await make_deferred_yieldable(
|
|
self._db_pool.runWithConnection(inner_func, *args, **kwargs)
|
|
)
|
|
|
|
@staticmethod
|
|
def cursor_to_dict(cursor: Cursor) -> List[Dict[str, Any]]:
|
|
"""Converts a SQL cursor into an list of dicts.
|
|
|
|
Args:
|
|
cursor: The DBAPI cursor which has executed a query.
|
|
Returns:
|
|
A list of dicts where the key is the column header.
|
|
"""
|
|
col_headers = [intern(str(column[0])) for column in cursor.description]
|
|
results = [dict(zip(col_headers, row)) for row in cursor]
|
|
return results
|
|
|
|
def execute(self, desc: str, decoder: Callable, query: str, *args: Any):
|
|
"""Runs a single query for a result set.
|
|
|
|
Args:
|
|
decoder - The function which can resolve the cursor results to
|
|
something meaningful.
|
|
query - The query string to execute
|
|
*args - Query args.
|
|
Returns:
|
|
Deferred which results to the result of decoder(results)
|
|
"""
|
|
|
|
def interaction(txn):
|
|
txn.execute(query, args)
|
|
if decoder:
|
|
return decoder(txn)
|
|
else:
|
|
return txn.fetchall()
|
|
|
|
return self.runInteraction(desc, interaction)
|
|
|
|
# "Simple" SQL API methods that operate on a single table with no JOINs,
|
|
# no complex WHERE clauses, just a dict of values for columns.
|
|
|
|
async def simple_insert(
|
|
self,
|
|
table: str,
|
|
values: Dict[str, Any],
|
|
or_ignore: bool = False,
|
|
desc: str = "simple_insert",
|
|
) -> bool:
|
|
"""Executes an INSERT query on the named table.
|
|
|
|
Args:
|
|
table: string giving the table name
|
|
values: dict of new column names and values for them
|
|
or_ignore: bool stating whether an exception should be raised
|
|
when a conflicting row already exists. If True, False will be
|
|
returned by the function instead
|
|
desc: string giving a description of the transaction
|
|
|
|
Returns:
|
|
Whether the row was inserted or not. Only useful when `or_ignore` is True
|
|
"""
|
|
try:
|
|
await self.runInteraction(desc, self.simple_insert_txn, table, values)
|
|
except self.engine.module.IntegrityError:
|
|
# We have to do or_ignore flag at this layer, since we can't reuse
|
|
# a cursor after we receive an error from the db.
|
|
if not or_ignore:
|
|
raise
|
|
return False
|
|
return True
|
|
|
|
@staticmethod
|
|
def simple_insert_txn(
|
|
txn: LoggingTransaction, table: str, values: Dict[str, Any]
|
|
) -> None:
|
|
keys, vals = zip(*values.items())
|
|
|
|
sql = "INSERT INTO %s (%s) VALUES(%s)" % (
|
|
table,
|
|
", ".join(k for k in keys),
|
|
", ".join("?" for _ in keys),
|
|
)
|
|
|
|
txn.execute(sql, vals)
|
|
|
|
def simple_insert_many(
|
|
self, table: str, values: List[Dict[str, Any]], desc: str
|
|
) -> defer.Deferred:
|
|
return self.runInteraction(desc, self.simple_insert_many_txn, table, values)
|
|
|
|
@staticmethod
|
|
def simple_insert_many_txn(
|
|
txn: LoggingTransaction, table: str, values: List[Dict[str, Any]]
|
|
) -> None:
|
|
if not values:
|
|
return
|
|
|
|
# This is a *slight* abomination to get a list of tuples of key names
|
|
# and a list of tuples of value names.
|
|
#
|
|
# i.e. [{"a": 1, "b": 2}, {"c": 3, "d": 4}]
|
|
# => [("a", "b",), ("c", "d",)] and [(1, 2,), (3, 4,)]
|
|
#
|
|
# The sort is to ensure that we don't rely on dictionary iteration
|
|
# order.
|
|
keys, vals = zip(
|
|
*[zip(*(sorted(i.items(), key=lambda kv: kv[0]))) for i in values if i]
|
|
)
|
|
|
|
for k in keys:
|
|
if k != keys[0]:
|
|
raise RuntimeError("All items must have the same keys")
|
|
|
|
sql = "INSERT INTO %s (%s) VALUES(%s)" % (
|
|
table,
|
|
", ".join(k for k in keys[0]),
|
|
", ".join("?" for _ in keys[0]),
|
|
)
|
|
|
|
txn.executemany(sql, vals)
|
|
|
|
async def simple_upsert(
|
|
self,
|
|
table: str,
|
|
keyvalues: Dict[str, Any],
|
|
values: Dict[str, Any],
|
|
insertion_values: Dict[str, Any] = {},
|
|
desc: str = "simple_upsert",
|
|
lock: bool = True,
|
|
) -> Optional[bool]:
|
|
"""
|
|
|
|
`lock` should generally be set to True (the default), but can be set
|
|
to False if either of the following are true:
|
|
|
|
* there is a UNIQUE INDEX on the key columns. In this case a conflict
|
|
will cause an IntegrityError in which case this function will retry
|
|
the update.
|
|
|
|
* we somehow know that we are the only thread which will be updating
|
|
this table.
|
|
|
|
Args:
|
|
table: The table to upsert into
|
|
keyvalues: The unique key columns and their new values
|
|
values: The nonunique columns and their new values
|
|
insertion_values: additional key/values to use only when inserting
|
|
lock: True to lock the table when doing the upsert.
|
|
Returns:
|
|
Native upserts always return None. Emulated upserts return True if a
|
|
new entry was created, False if an existing one was updated.
|
|
"""
|
|
attempts = 0
|
|
while True:
|
|
try:
|
|
return await self.runInteraction(
|
|
desc,
|
|
self.simple_upsert_txn,
|
|
table,
|
|
keyvalues,
|
|
values,
|
|
insertion_values,
|
|
lock=lock,
|
|
)
|
|
except self.engine.module.IntegrityError as e:
|
|
attempts += 1
|
|
if attempts >= 5:
|
|
# don't retry forever, because things other than races
|
|
# can cause IntegrityErrors
|
|
raise
|
|
|
|
# presumably we raced with another transaction: let's retry.
|
|
logger.warning(
|
|
"IntegrityError when upserting into %s; retrying: %s", table, e
|
|
)
|
|
|
|
def simple_upsert_txn(
|
|
self,
|
|
txn: LoggingTransaction,
|
|
table: str,
|
|
keyvalues: Dict[str, Any],
|
|
values: Dict[str, Any],
|
|
insertion_values: Dict[str, Any] = {},
|
|
lock: bool = True,
|
|
) -> Optional[bool]:
|
|
"""
|
|
Pick the UPSERT method which works best on the platform. Either the
|
|
native one (Pg9.5+, recent SQLites), or fall back to an emulated method.
|
|
|
|
Args:
|
|
txn: The transaction to use.
|
|
table: The table to upsert into
|
|
keyvalues: The unique key tables and their new values
|
|
values: The nonunique columns and their new values
|
|
insertion_values: additional key/values to use only when inserting
|
|
lock: True to lock the table when doing the upsert.
|
|
Returns:
|
|
Native upserts always return None. Emulated upserts return True if a
|
|
new entry was created, False if an existing one was updated.
|
|
"""
|
|
if self.engine.can_native_upsert and table not in self._unsafe_to_upsert_tables:
|
|
self.simple_upsert_txn_native_upsert(
|
|
txn, table, keyvalues, values, insertion_values=insertion_values
|
|
)
|
|
return None
|
|
else:
|
|
return self.simple_upsert_txn_emulated(
|
|
txn,
|
|
table,
|
|
keyvalues,
|
|
values,
|
|
insertion_values=insertion_values,
|
|
lock=lock,
|
|
)
|
|
|
|
def simple_upsert_txn_emulated(
|
|
self,
|
|
txn: LoggingTransaction,
|
|
table: str,
|
|
keyvalues: Dict[str, Any],
|
|
values: Dict[str, Any],
|
|
insertion_values: Dict[str, Any] = {},
|
|
lock: bool = True,
|
|
) -> bool:
|
|
"""
|
|
Args:
|
|
table: The table to upsert into
|
|
keyvalues: The unique key tables and their new values
|
|
values: The nonunique columns and their new values
|
|
insertion_values: additional key/values to use only when inserting
|
|
lock: True to lock the table when doing the upsert.
|
|
Returns:
|
|
Returns True if a new entry was created, False if an existing
|
|
one was updated.
|
|
"""
|
|
# We need to lock the table :(, unless we're *really* careful
|
|
if lock:
|
|
self.engine.lock_table(txn, table)
|
|
|
|
def _getwhere(key):
|
|
# If the value we're passing in is None (aka NULL), we need to use
|
|
# IS, not =, as NULL = NULL equals NULL (False).
|
|
if keyvalues[key] is None:
|
|
return "%s IS ?" % (key,)
|
|
else:
|
|
return "%s = ?" % (key,)
|
|
|
|
if not values:
|
|
# If `values` is empty, then all of the values we care about are in
|
|
# the unique key, so there is nothing to UPDATE. We can just do a
|
|
# SELECT instead to see if it exists.
|
|
sql = "SELECT 1 FROM %s WHERE %s" % (
|
|
table,
|
|
" AND ".join(_getwhere(k) for k in keyvalues),
|
|
)
|
|
sqlargs = list(keyvalues.values())
|
|
txn.execute(sql, sqlargs)
|
|
if txn.fetchall():
|
|
# We have an existing record.
|
|
return False
|
|
else:
|
|
# First try to update.
|
|
sql = "UPDATE %s SET %s WHERE %s" % (
|
|
table,
|
|
", ".join("%s = ?" % (k,) for k in values),
|
|
" AND ".join(_getwhere(k) for k in keyvalues),
|
|
)
|
|
sqlargs = list(values.values()) + list(keyvalues.values())
|
|
|
|
txn.execute(sql, sqlargs)
|
|
if txn.rowcount > 0:
|
|
# successfully updated at least one row.
|
|
return False
|
|
|
|
# We didn't find any existing rows, so insert a new one
|
|
allvalues = {} # type: Dict[str, Any]
|
|
allvalues.update(keyvalues)
|
|
allvalues.update(values)
|
|
allvalues.update(insertion_values)
|
|
|
|
sql = "INSERT INTO %s (%s) VALUES (%s)" % (
|
|
table,
|
|
", ".join(k for k in allvalues),
|
|
", ".join("?" for _ in allvalues),
|
|
)
|
|
txn.execute(sql, list(allvalues.values()))
|
|
# successfully inserted
|
|
return True
|
|
|
|
def simple_upsert_txn_native_upsert(
|
|
self,
|
|
txn: LoggingTransaction,
|
|
table: str,
|
|
keyvalues: Dict[str, Any],
|
|
values: Dict[str, Any],
|
|
insertion_values: Dict[str, Any] = {},
|
|
) -> None:
|
|
"""
|
|
Use the native UPSERT functionality in recent PostgreSQL versions.
|
|
|
|
Args:
|
|
table: The table to upsert into
|
|
keyvalues: The unique key tables and their new values
|
|
values: The nonunique columns and their new values
|
|
insertion_values: additional key/values to use only when inserting
|
|
"""
|
|
allvalues = {} # type: Dict[str, Any]
|
|
allvalues.update(keyvalues)
|
|
allvalues.update(insertion_values)
|
|
|
|
if not values:
|
|
latter = "NOTHING"
|
|
else:
|
|
allvalues.update(values)
|
|
latter = "UPDATE SET " + ", ".join(k + "=EXCLUDED." + k for k in values)
|
|
|
|
sql = ("INSERT INTO %s (%s) VALUES (%s) ON CONFLICT (%s) DO %s") % (
|
|
table,
|
|
", ".join(k for k in allvalues),
|
|
", ".join("?" for _ in allvalues),
|
|
", ".join(k for k in keyvalues),
|
|
latter,
|
|
)
|
|
txn.execute(sql, list(allvalues.values()))
|
|
|
|
def simple_upsert_many_txn(
|
|
self,
|
|
txn: LoggingTransaction,
|
|
table: str,
|
|
key_names: Collection[str],
|
|
key_values: Collection[Iterable[Any]],
|
|
value_names: Collection[str],
|
|
value_values: Iterable[Iterable[str]],
|
|
) -> None:
|
|
"""
|
|
Upsert, many times.
|
|
|
|
Args:
|
|
table: The table to upsert into
|
|
key_names: The key column names.
|
|
key_values: A list of each row's key column values.
|
|
value_names: The value column names
|
|
value_values: A list of each row's value column values.
|
|
Ignored if value_names is empty.
|
|
"""
|
|
if self.engine.can_native_upsert and table not in self._unsafe_to_upsert_tables:
|
|
return self.simple_upsert_many_txn_native_upsert(
|
|
txn, table, key_names, key_values, value_names, value_values
|
|
)
|
|
else:
|
|
return self.simple_upsert_many_txn_emulated(
|
|
txn, table, key_names, key_values, value_names, value_values
|
|
)
|
|
|
|
def simple_upsert_many_txn_emulated(
|
|
self,
|
|
txn: LoggingTransaction,
|
|
table: str,
|
|
key_names: Iterable[str],
|
|
key_values: Collection[Iterable[Any]],
|
|
value_names: Collection[str],
|
|
value_values: Iterable[Iterable[str]],
|
|
) -> None:
|
|
"""
|
|
Upsert, many times, but without native UPSERT support or batching.
|
|
|
|
Args:
|
|
table: The table to upsert into
|
|
key_names: The key column names.
|
|
key_values: A list of each row's key column values.
|
|
value_names: The value column names
|
|
value_values: A list of each row's value column values.
|
|
Ignored if value_names is empty.
|
|
"""
|
|
# No value columns, therefore make a blank list so that the following
|
|
# zip() works correctly.
|
|
if not value_names:
|
|
value_values = [() for x in range(len(key_values))]
|
|
|
|
for keyv, valv in zip(key_values, value_values):
|
|
_keys = {x: y for x, y in zip(key_names, keyv)}
|
|
_vals = {x: y for x, y in zip(value_names, valv)}
|
|
|
|
self.simple_upsert_txn_emulated(txn, table, _keys, _vals)
|
|
|
|
def simple_upsert_many_txn_native_upsert(
|
|
self,
|
|
txn: LoggingTransaction,
|
|
table: str,
|
|
key_names: Collection[str],
|
|
key_values: Collection[Iterable[Any]],
|
|
value_names: Collection[str],
|
|
value_values: Iterable[Iterable[Any]],
|
|
) -> None:
|
|
"""
|
|
Upsert, many times, using batching where possible.
|
|
|
|
Args:
|
|
table: The table to upsert into
|
|
key_names: The key column names.
|
|
key_values: A list of each row's key column values.
|
|
value_names: The value column names
|
|
value_values: A list of each row's value column values.
|
|
Ignored if value_names is empty.
|
|
"""
|
|
allnames = [] # type: List[str]
|
|
allnames.extend(key_names)
|
|
allnames.extend(value_names)
|
|
|
|
if not value_names:
|
|
# No value columns, therefore make a blank list so that the
|
|
# following zip() works correctly.
|
|
latter = "NOTHING"
|
|
value_values = [() for x in range(len(key_values))]
|
|
else:
|
|
latter = "UPDATE SET " + ", ".join(
|
|
k + "=EXCLUDED." + k for k in value_names
|
|
)
|
|
|
|
sql = "INSERT INTO %s (%s) VALUES (%s) ON CONFLICT (%s) DO %s" % (
|
|
table,
|
|
", ".join(k for k in allnames),
|
|
", ".join("?" for _ in allnames),
|
|
", ".join(key_names),
|
|
latter,
|
|
)
|
|
|
|
args = []
|
|
|
|
for x, y in zip(key_values, value_values):
|
|
args.append(tuple(x) + tuple(y))
|
|
|
|
return txn.execute_batch(sql, args)
|
|
|
|
def simple_select_one(
|
|
self,
|
|
table: str,
|
|
keyvalues: Dict[str, Any],
|
|
retcols: Iterable[str],
|
|
allow_none: bool = False,
|
|
desc: str = "simple_select_one",
|
|
) -> defer.Deferred:
|
|
"""Executes a SELECT query on the named table, which is expected to
|
|
return a single row, returning multiple columns from it.
|
|
|
|
Args:
|
|
table: string giving the table name
|
|
keyvalues: dict of column names and values to select the row with
|
|
retcols: list of strings giving the names of the columns to return
|
|
allow_none: If true, return None instead of failing if the SELECT
|
|
statement returns no rows
|
|
"""
|
|
return self.runInteraction(
|
|
desc, self.simple_select_one_txn, table, keyvalues, retcols, allow_none
|
|
)
|
|
|
|
def simple_select_one_onecol(
|
|
self,
|
|
table: str,
|
|
keyvalues: Dict[str, Any],
|
|
retcol: Iterable[str],
|
|
allow_none: bool = False,
|
|
desc: str = "simple_select_one_onecol",
|
|
) -> defer.Deferred:
|
|
"""Executes a SELECT query on the named table, which is expected to
|
|
return a single row, returning a single column from it.
|
|
|
|
Args:
|
|
table: string giving the table name
|
|
keyvalues: dict of column names and values to select the row with
|
|
retcol: string giving the name of the column to return
|
|
allow_none: If true, return None instead of failing if the SELECT
|
|
statement returns no rows
|
|
desc: description of the transaction, for logging and metrics
|
|
"""
|
|
return self.runInteraction(
|
|
desc,
|
|
self.simple_select_one_onecol_txn,
|
|
table,
|
|
keyvalues,
|
|
retcol,
|
|
allow_none=allow_none,
|
|
)
|
|
|
|
@classmethod
|
|
def simple_select_one_onecol_txn(
|
|
cls,
|
|
txn: LoggingTransaction,
|
|
table: str,
|
|
keyvalues: Dict[str, Any],
|
|
retcol: Iterable[str],
|
|
allow_none: bool = False,
|
|
) -> Optional[Any]:
|
|
ret = cls.simple_select_onecol_txn(
|
|
txn, table=table, keyvalues=keyvalues, retcol=retcol
|
|
)
|
|
|
|
if ret:
|
|
return ret[0]
|
|
else:
|
|
if allow_none:
|
|
return None
|
|
else:
|
|
raise StoreError(404, "No row found")
|
|
|
|
@staticmethod
|
|
def simple_select_onecol_txn(
|
|
txn: LoggingTransaction,
|
|
table: str,
|
|
keyvalues: Dict[str, Any],
|
|
retcol: Iterable[str],
|
|
) -> List[Any]:
|
|
sql = ("SELECT %(retcol)s FROM %(table)s") % {"retcol": retcol, "table": table}
|
|
|
|
if keyvalues:
|
|
sql += " WHERE %s" % " AND ".join("%s = ?" % k for k in keyvalues.keys())
|
|
txn.execute(sql, list(keyvalues.values()))
|
|
else:
|
|
txn.execute(sql)
|
|
|
|
return [r[0] for r in txn]
|
|
|
|
def simple_select_onecol(
|
|
self,
|
|
table: str,
|
|
keyvalues: Optional[Dict[str, Any]],
|
|
retcol: str,
|
|
desc: str = "simple_select_onecol",
|
|
) -> defer.Deferred:
|
|
"""Executes a SELECT query on the named table, which returns a list
|
|
comprising of the values of the named column from the selected rows.
|
|
|
|
Args:
|
|
table: table name
|
|
keyvalues: column names and values to select the rows with
|
|
retcol: column whos value we wish to retrieve.
|
|
|
|
Returns:
|
|
Deferred: Results in a list
|
|
"""
|
|
return self.runInteraction(
|
|
desc, self.simple_select_onecol_txn, table, keyvalues, retcol
|
|
)
|
|
|
|
def simple_select_list(
|
|
self,
|
|
table: str,
|
|
keyvalues: Optional[Dict[str, Any]],
|
|
retcols: Iterable[str],
|
|
desc: str = "simple_select_list",
|
|
) -> defer.Deferred:
|
|
"""Executes a SELECT query on the named table, which may return zero or
|
|
more rows, returning the result as a list of dicts.
|
|
|
|
Args:
|
|
table: the table name
|
|
keyvalues:
|
|
column names and values to select the rows with, or None to not
|
|
apply a WHERE clause.
|
|
retcols: the names of the columns to return
|
|
Returns:
|
|
defer.Deferred: resolves to list[dict[str, Any]]
|
|
"""
|
|
return self.runInteraction(
|
|
desc, self.simple_select_list_txn, table, keyvalues, retcols
|
|
)
|
|
|
|
@classmethod
|
|
def simple_select_list_txn(
|
|
cls,
|
|
txn: LoggingTransaction,
|
|
table: str,
|
|
keyvalues: Optional[Dict[str, Any]],
|
|
retcols: Iterable[str],
|
|
) -> List[Dict[str, Any]]:
|
|
"""Executes a SELECT query on the named table, which may return zero or
|
|
more rows, returning the result as a list of dicts.
|
|
|
|
Args:
|
|
txn: Transaction object
|
|
table: the table name
|
|
keyvalues:
|
|
column names and values to select the rows with, or None to not
|
|
apply a WHERE clause.
|
|
retcols: the names of the columns to return
|
|
"""
|
|
if keyvalues:
|
|
sql = "SELECT %s FROM %s WHERE %s" % (
|
|
", ".join(retcols),
|
|
table,
|
|
" AND ".join("%s = ?" % (k,) for k in keyvalues),
|
|
)
|
|
txn.execute(sql, list(keyvalues.values()))
|
|
else:
|
|
sql = "SELECT %s FROM %s" % (", ".join(retcols), table)
|
|
txn.execute(sql)
|
|
|
|
return cls.cursor_to_dict(txn)
|
|
|
|
async def simple_select_many_batch(
|
|
self,
|
|
table: str,
|
|
column: str,
|
|
iterable: Iterable[Any],
|
|
retcols: Iterable[str],
|
|
keyvalues: Dict[str, Any] = {},
|
|
desc: str = "simple_select_many_batch",
|
|
batch_size: int = 100,
|
|
) -> List[Any]:
|
|
"""Executes a SELECT query on the named table, which may return zero or
|
|
more rows, returning the result as a list of dicts.
|
|
|
|
Filters rows by if value of `column` is in `iterable`.
|
|
|
|
Args:
|
|
table: string giving the table name
|
|
column: column name to test for inclusion against `iterable`
|
|
iterable: list
|
|
keyvalues: dict of column names and values to select the rows with
|
|
retcols: list of strings giving the names of the columns to return
|
|
"""
|
|
results = [] # type: List[Dict[str, Any]]
|
|
|
|
if not iterable:
|
|
return results
|
|
|
|
# iterables can not be sliced, so convert it to a list first
|
|
it_list = list(iterable)
|
|
|
|
chunks = [
|
|
it_list[i : i + batch_size] for i in range(0, len(it_list), batch_size)
|
|
]
|
|
for chunk in chunks:
|
|
rows = await self.runInteraction(
|
|
desc,
|
|
self.simple_select_many_txn,
|
|
table,
|
|
column,
|
|
chunk,
|
|
keyvalues,
|
|
retcols,
|
|
)
|
|
|
|
results.extend(rows)
|
|
|
|
return results
|
|
|
|
@classmethod
|
|
def simple_select_many_txn(
|
|
cls,
|
|
txn: LoggingTransaction,
|
|
table: str,
|
|
column: str,
|
|
iterable: Iterable[Any],
|
|
keyvalues: Dict[str, Any],
|
|
retcols: Iterable[str],
|
|
) -> List[Dict[str, Any]]:
|
|
"""Executes a SELECT query on the named table, which may return zero or
|
|
more rows, returning the result as a list of dicts.
|
|
|
|
Filters rows by if value of `column` is in `iterable`.
|
|
|
|
Args:
|
|
txn: Transaction object
|
|
table: string giving the table name
|
|
column: column name to test for inclusion against `iterable`
|
|
iterable: list
|
|
keyvalues: dict of column names and values to select the rows with
|
|
retcols: list of strings giving the names of the columns to return
|
|
"""
|
|
if not iterable:
|
|
return []
|
|
|
|
clause, values = make_in_list_sql_clause(txn.database_engine, column, iterable)
|
|
clauses = [clause]
|
|
|
|
for key, value in keyvalues.items():
|
|
clauses.append("%s = ?" % (key,))
|
|
values.append(value)
|
|
|
|
sql = "SELECT %s FROM %s WHERE %s" % (
|
|
", ".join(retcols),
|
|
table,
|
|
" AND ".join(clauses),
|
|
)
|
|
|
|
txn.execute(sql, values)
|
|
return cls.cursor_to_dict(txn)
|
|
|
|
def simple_update(
|
|
self,
|
|
table: str,
|
|
keyvalues: Dict[str, Any],
|
|
updatevalues: Dict[str, Any],
|
|
desc: str,
|
|
) -> defer.Deferred:
|
|
return self.runInteraction(
|
|
desc, self.simple_update_txn, table, keyvalues, updatevalues
|
|
)
|
|
|
|
@staticmethod
|
|
def simple_update_txn(
|
|
txn: LoggingTransaction,
|
|
table: str,
|
|
keyvalues: Dict[str, Any],
|
|
updatevalues: Dict[str, Any],
|
|
) -> int:
|
|
if keyvalues:
|
|
where = "WHERE %s" % " AND ".join("%s = ?" % k for k in keyvalues.keys())
|
|
else:
|
|
where = ""
|
|
|
|
update_sql = "UPDATE %s SET %s %s" % (
|
|
table,
|
|
", ".join("%s = ?" % (k,) for k in updatevalues),
|
|
where,
|
|
)
|
|
|
|
txn.execute(update_sql, list(updatevalues.values()) + list(keyvalues.values()))
|
|
|
|
return txn.rowcount
|
|
|
|
def simple_update_one(
|
|
self,
|
|
table: str,
|
|
keyvalues: Dict[str, Any],
|
|
updatevalues: Dict[str, Any],
|
|
desc: str = "simple_update_one",
|
|
) -> defer.Deferred:
|
|
"""Executes an UPDATE query on the named table, setting new values for
|
|
columns in a row matching the key values.
|
|
|
|
Args:
|
|
table: string giving the table name
|
|
keyvalues: dict of column names and values to select the row with
|
|
updatevalues: dict giving column names and values to update
|
|
"""
|
|
return self.runInteraction(
|
|
desc, self.simple_update_one_txn, table, keyvalues, updatevalues
|
|
)
|
|
|
|
@classmethod
|
|
def simple_update_one_txn(
|
|
cls,
|
|
txn: LoggingTransaction,
|
|
table: str,
|
|
keyvalues: Dict[str, Any],
|
|
updatevalues: Dict[str, Any],
|
|
) -> None:
|
|
rowcount = cls.simple_update_txn(txn, table, keyvalues, updatevalues)
|
|
|
|
if rowcount == 0:
|
|
raise StoreError(404, "No row found (%s)" % (table,))
|
|
if rowcount > 1:
|
|
raise StoreError(500, "More than one row matched (%s)" % (table,))
|
|
|
|
# Ideally we could use the overload decorator here to specify that the
|
|
# return type is only optional if allow_none is True, but this does not work
|
|
# when you call a static method from an instance.
|
|
# See https://github.com/python/mypy/issues/7781
|
|
@staticmethod
|
|
def simple_select_one_txn(
|
|
txn: LoggingTransaction,
|
|
table: str,
|
|
keyvalues: Dict[str, Any],
|
|
retcols: Iterable[str],
|
|
allow_none: bool = False,
|
|
) -> Optional[Dict[str, Any]]:
|
|
select_sql = "SELECT %s FROM %s WHERE %s" % (
|
|
", ".join(retcols),
|
|
table,
|
|
" AND ".join("%s = ?" % (k,) for k in keyvalues),
|
|
)
|
|
|
|
txn.execute(select_sql, list(keyvalues.values()))
|
|
row = txn.fetchone()
|
|
|
|
if not row:
|
|
if allow_none:
|
|
return None
|
|
raise StoreError(404, "No row found (%s)" % (table,))
|
|
if txn.rowcount > 1:
|
|
raise StoreError(500, "More than one row matched (%s)" % (table,))
|
|
|
|
return dict(zip(retcols, row))
|
|
|
|
def simple_delete_one(
|
|
self, table: str, keyvalues: Dict[str, Any], desc: str = "simple_delete_one"
|
|
) -> defer.Deferred:
|
|
"""Executes a DELETE query on the named table, expecting to delete a
|
|
single row.
|
|
|
|
Args:
|
|
table: string giving the table name
|
|
keyvalues: dict of column names and values to select the row with
|
|
"""
|
|
return self.runInteraction(desc, self.simple_delete_one_txn, table, keyvalues)
|
|
|
|
@staticmethod
|
|
def simple_delete_one_txn(
|
|
txn: LoggingTransaction, table: str, keyvalues: Dict[str, Any]
|
|
) -> None:
|
|
"""Executes a DELETE query on the named table, expecting to delete a
|
|
single row.
|
|
|
|
Args:
|
|
table: string giving the table name
|
|
keyvalues: dict of column names and values to select the row with
|
|
"""
|
|
sql = "DELETE FROM %s WHERE %s" % (
|
|
table,
|
|
" AND ".join("%s = ?" % (k,) for k in keyvalues),
|
|
)
|
|
|
|
txn.execute(sql, list(keyvalues.values()))
|
|
if txn.rowcount == 0:
|
|
raise StoreError(404, "No row found (%s)" % (table,))
|
|
if txn.rowcount > 1:
|
|
raise StoreError(500, "More than one row matched (%s)" % (table,))
|
|
|
|
def simple_delete(self, table: str, keyvalues: Dict[str, Any], desc: str):
|
|
return self.runInteraction(desc, self.simple_delete_txn, table, keyvalues)
|
|
|
|
@staticmethod
|
|
def simple_delete_txn(
|
|
txn: LoggingTransaction, table: str, keyvalues: Dict[str, Any]
|
|
) -> int:
|
|
sql = "DELETE FROM %s WHERE %s" % (
|
|
table,
|
|
" AND ".join("%s = ?" % (k,) for k in keyvalues),
|
|
)
|
|
|
|
txn.execute(sql, list(keyvalues.values()))
|
|
return txn.rowcount
|
|
|
|
def simple_delete_many(
|
|
self,
|
|
table: str,
|
|
column: str,
|
|
iterable: Iterable[Any],
|
|
keyvalues: Dict[str, Any],
|
|
desc: str,
|
|
) -> defer.Deferred:
|
|
return self.runInteraction(
|
|
desc, self.simple_delete_many_txn, table, column, iterable, keyvalues
|
|
)
|
|
|
|
@staticmethod
|
|
def simple_delete_many_txn(
|
|
txn: LoggingTransaction,
|
|
table: str,
|
|
column: str,
|
|
iterable: Iterable[Any],
|
|
keyvalues: Dict[str, Any],
|
|
) -> int:
|
|
"""Executes a DELETE query on the named table.
|
|
|
|
Filters rows by if value of `column` is in `iterable`.
|
|
|
|
Args:
|
|
txn: Transaction object
|
|
table: string giving the table name
|
|
column: column name to test for inclusion against `iterable`
|
|
iterable: list
|
|
keyvalues: dict of column names and values to select the rows with
|
|
|
|
Returns:
|
|
Number rows deleted
|
|
"""
|
|
if not iterable:
|
|
return 0
|
|
|
|
sql = "DELETE FROM %s" % table
|
|
|
|
clause, values = make_in_list_sql_clause(txn.database_engine, column, iterable)
|
|
clauses = [clause]
|
|
|
|
for key, value in keyvalues.items():
|
|
clauses.append("%s = ?" % (key,))
|
|
values.append(value)
|
|
|
|
if clauses:
|
|
sql = "%s WHERE %s" % (sql, " AND ".join(clauses))
|
|
txn.execute(sql, values)
|
|
|
|
return txn.rowcount
|
|
|
|
def get_cache_dict(
|
|
self,
|
|
db_conn: Connection,
|
|
table: str,
|
|
entity_column: str,
|
|
stream_column: str,
|
|
max_value: int,
|
|
limit: int = 100000,
|
|
) -> Tuple[Dict[Any, int], int]:
|
|
# Fetch a mapping of room_id -> max stream position for "recent" rooms.
|
|
# It doesn't really matter how many we get, the StreamChangeCache will
|
|
# do the right thing to ensure it respects the max size of cache.
|
|
sql = (
|
|
"SELECT %(entity)s, MAX(%(stream)s) FROM %(table)s"
|
|
" WHERE %(stream)s > ? - %(limit)s"
|
|
" GROUP BY %(entity)s"
|
|
) % {
|
|
"table": table,
|
|
"entity": entity_column,
|
|
"stream": stream_column,
|
|
"limit": limit,
|
|
}
|
|
|
|
sql = self.engine.convert_param_style(sql)
|
|
|
|
txn = db_conn.cursor()
|
|
txn.execute(sql, (int(max_value),))
|
|
|
|
cache = {row[0]: int(row[1]) for row in txn}
|
|
|
|
txn.close()
|
|
|
|
if cache:
|
|
min_val = min(cache.values())
|
|
else:
|
|
min_val = max_value
|
|
|
|
return cache, min_val
|
|
|
|
def simple_select_list_paginate(
|
|
self,
|
|
table: str,
|
|
orderby: str,
|
|
start: int,
|
|
limit: int,
|
|
retcols: Iterable[str],
|
|
filters: Optional[Dict[str, Any]] = None,
|
|
keyvalues: Optional[Dict[str, Any]] = None,
|
|
order_direction: str = "ASC",
|
|
desc: str = "simple_select_list_paginate",
|
|
) -> defer.Deferred:
|
|
"""
|
|
Executes a SELECT query on the named table with start and limit,
|
|
of row numbers, which may return zero or number of rows from start to limit,
|
|
returning the result as a list of dicts.
|
|
|
|
Args:
|
|
table: the table name
|
|
orderby: Column to order the results by.
|
|
start: Index to begin the query at.
|
|
limit: Number of results to return.
|
|
retcols: the names of the columns to return
|
|
filters:
|
|
column names and values to filter the rows with, or None to not
|
|
apply a WHERE ? LIKE ? clause.
|
|
keyvalues:
|
|
column names and values to select the rows with, or None to not
|
|
apply a WHERE clause.
|
|
order_direction: Whether the results should be ordered "ASC" or "DESC".
|
|
Returns:
|
|
defer.Deferred: resolves to list[dict[str, Any]]
|
|
"""
|
|
return self.runInteraction(
|
|
desc,
|
|
self.simple_select_list_paginate_txn,
|
|
table,
|
|
orderby,
|
|
start,
|
|
limit,
|
|
retcols,
|
|
filters=filters,
|
|
keyvalues=keyvalues,
|
|
order_direction=order_direction,
|
|
)
|
|
|
|
@classmethod
|
|
def simple_select_list_paginate_txn(
|
|
cls,
|
|
txn: LoggingTransaction,
|
|
table: str,
|
|
orderby: str,
|
|
start: int,
|
|
limit: int,
|
|
retcols: Iterable[str],
|
|
filters: Optional[Dict[str, Any]] = None,
|
|
keyvalues: Optional[Dict[str, Any]] = None,
|
|
order_direction: str = "ASC",
|
|
) -> List[Dict[str, Any]]:
|
|
"""
|
|
Executes a SELECT query on the named table with start and limit,
|
|
of row numbers, which may return zero or number of rows from start to limit,
|
|
returning the result as a list of dicts.
|
|
|
|
Use `filters` to search attributes using SQL wildcards and/or `keyvalues` to
|
|
select attributes with exact matches. All constraints are joined together
|
|
using 'AND'.
|
|
|
|
Args:
|
|
txn: Transaction object
|
|
table: the table name
|
|
orderby: Column to order the results by.
|
|
start: Index to begin the query at.
|
|
limit: Number of results to return.
|
|
retcols: the names of the columns to return
|
|
filters:
|
|
column names and values to filter the rows with, or None to not
|
|
apply a WHERE ? LIKE ? clause.
|
|
keyvalues:
|
|
column names and values to select the rows with, or None to not
|
|
apply a WHERE clause.
|
|
order_direction: Whether the results should be ordered "ASC" or "DESC".
|
|
|
|
Returns:
|
|
The result as a list of dictionaries.
|
|
"""
|
|
if order_direction not in ["ASC", "DESC"]:
|
|
raise ValueError("order_direction must be one of 'ASC' or 'DESC'.")
|
|
|
|
where_clause = "WHERE " if filters or keyvalues else ""
|
|
arg_list = [] # type: List[Any]
|
|
if filters:
|
|
where_clause += " AND ".join("%s LIKE ?" % (k,) for k in filters)
|
|
arg_list += list(filters.values())
|
|
where_clause += " AND " if filters and keyvalues else ""
|
|
if keyvalues:
|
|
where_clause += " AND ".join("%s = ?" % (k,) for k in keyvalues)
|
|
arg_list += list(keyvalues.values())
|
|
|
|
sql = "SELECT %s FROM %s %s ORDER BY %s %s LIMIT ? OFFSET ?" % (
|
|
", ".join(retcols),
|
|
table,
|
|
where_clause,
|
|
orderby,
|
|
order_direction,
|
|
)
|
|
txn.execute(sql, arg_list + [limit, start])
|
|
|
|
return cls.cursor_to_dict(txn)
|
|
|
|
def simple_search_list(
|
|
self,
|
|
table: str,
|
|
term: Optional[str],
|
|
col: str,
|
|
retcols: Iterable[str],
|
|
desc="simple_search_list",
|
|
):
|
|
"""Executes a SELECT query on the named table, which may return zero or
|
|
more rows, returning the result as a list of dicts.
|
|
|
|
Args:
|
|
table: the table name
|
|
term: term for searching the table matched to a column.
|
|
col: column to query term should be matched to
|
|
retcols: the names of the columns to return
|
|
|
|
Returns:
|
|
defer.Deferred: resolves to list[dict[str, Any]] or None
|
|
"""
|
|
|
|
return self.runInteraction(
|
|
desc, self.simple_search_list_txn, table, term, col, retcols
|
|
)
|
|
|
|
@classmethod
|
|
def simple_search_list_txn(
|
|
cls,
|
|
txn: LoggingTransaction,
|
|
table: str,
|
|
term: Optional[str],
|
|
col: str,
|
|
retcols: Iterable[str],
|
|
) -> Union[List[Dict[str, Any]], int]:
|
|
"""Executes a SELECT query on the named table, which may return zero or
|
|
more rows, returning the result as a list of dicts.
|
|
|
|
Args:
|
|
txn: Transaction object
|
|
table: the table name
|
|
term: term for searching the table matched to a column.
|
|
col: column to query term should be matched to
|
|
retcols: the names of the columns to return
|
|
|
|
Returns:
|
|
0 if no term is given, otherwise a list of dictionaries.
|
|
"""
|
|
if term:
|
|
sql = "SELECT %s FROM %s WHERE %s LIKE ?" % (", ".join(retcols), table, col)
|
|
termvalues = ["%%" + term + "%%"]
|
|
txn.execute(sql, termvalues)
|
|
else:
|
|
return 0
|
|
|
|
return cls.cursor_to_dict(txn)
|
|
|
|
|
|
def make_in_list_sql_clause(
|
|
database_engine: BaseDatabaseEngine, column: str, iterable: Iterable
|
|
) -> Tuple[str, list]:
|
|
"""Returns an SQL clause that checks the given column is in the iterable.
|
|
|
|
On SQLite this expands to `column IN (?, ?, ...)`, whereas on Postgres
|
|
it expands to `column = ANY(?)`. While both DBs support the `IN` form,
|
|
using the `ANY` form on postgres means that it views queries with
|
|
different length iterables as the same, helping the query stats.
|
|
|
|
Args:
|
|
database_engine
|
|
column: Name of the column
|
|
iterable: The values to check the column against.
|
|
|
|
Returns:
|
|
A tuple of SQL query and the args
|
|
"""
|
|
|
|
if database_engine.supports_using_any_list:
|
|
# This should hopefully be faster, but also makes postgres query
|
|
# stats easier to understand.
|
|
return "%s = ANY(?)" % (column,), [list(iterable)]
|
|
else:
|
|
return "%s IN (%s)" % (column, ",".join("?" for _ in iterable)), list(iterable)
|
|
|
|
|
|
KV = TypeVar("KV")
|
|
|
|
|
|
def make_tuple_comparison_clause(
|
|
database_engine: BaseDatabaseEngine, keys: List[Tuple[str, KV]]
|
|
) -> Tuple[str, List[KV]]:
|
|
"""Returns a tuple comparison SQL clause
|
|
|
|
Depending what the SQL engine supports, builds a SQL clause that looks like either
|
|
"(a, b) > (?, ?)", or "(a > ?) OR (a == ? AND b > ?)".
|
|
|
|
Args:
|
|
database_engine
|
|
keys: A set of (column, value) pairs to be compared.
|
|
|
|
Returns:
|
|
A tuple of SQL query and the args
|
|
"""
|
|
if database_engine.supports_tuple_comparison:
|
|
return (
|
|
"(%s) > (%s)" % (",".join(k[0] for k in keys), ",".join("?" for _ in keys)),
|
|
[k[1] for k in keys],
|
|
)
|
|
|
|
# we want to build a clause
|
|
# (a > ?) OR
|
|
# (a == ? AND b > ?) OR
|
|
# (a == ? AND b == ? AND c > ?)
|
|
# ...
|
|
# (a == ? AND b == ? AND ... AND z > ?)
|
|
#
|
|
# or, equivalently:
|
|
#
|
|
# (a > ? OR (a == ? AND
|
|
# (b > ? OR (b == ? AND
|
|
# ...
|
|
# (y > ? OR (y == ? AND
|
|
# z > ?
|
|
# ))
|
|
# ...
|
|
# ))
|
|
# ))
|
|
#
|
|
# which itself is equivalent to (and apparently easier for the query optimiser):
|
|
#
|
|
# (a >= ? AND (a > ? OR
|
|
# (b >= ? AND (b > ? OR
|
|
# ...
|
|
# (y >= ? AND (y > ? OR
|
|
# z > ?
|
|
# ))
|
|
# ...
|
|
# ))
|
|
# ))
|
|
#
|
|
#
|
|
|
|
clause = ""
|
|
args = [] # type: List[KV]
|
|
for k, v in keys[:-1]:
|
|
clause = clause + "(%s >= ? AND (%s > ? OR " % (k, k)
|
|
args.extend([v, v])
|
|
|
|
(k, v) = keys[-1]
|
|
clause += "%s > ?" % (k,)
|
|
args.append(v)
|
|
|
|
clause += "))" * (len(keys) - 1)
|
|
return clause, args
|