256 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			Python
		
	
	
			
		
		
	
	
			256 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			Python
		
	
	
| # -*- coding: utf-8 -*-
 | |
| # Copyright 2015, 2016 OpenMarket Ltd
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| 
 | |
| from itertools import chain
 | |
| 
 | |
| 
 | |
| def flatten(items):
 | |
|     """Flatten a list of lists
 | |
| 
 | |
|     Args:
 | |
|         items: iterable[iterable[X]]
 | |
| 
 | |
|     Returns:
 | |
|         list[X]: flattened list
 | |
|     """
 | |
|     return list(chain.from_iterable(items))
 | |
| 
 | |
| 
 | |
| class BaseMetric(object):
 | |
|     """Base class for metrics which report a single value per label set
 | |
|     """
 | |
| 
 | |
|     def __init__(self, name, labels=[], alternative_names=[]):
 | |
|         """
 | |
|         Args:
 | |
|             name (str): principal name for this metric
 | |
|             labels (list(str)): names of the labels which will be reported
 | |
|                 for this metric
 | |
|             alternative_names (iterable(str)): list of alternative names for
 | |
|                  this metric. This can be useful to provide a migration path
 | |
|                 when renaming metrics.
 | |
|         """
 | |
|         self._names = [name] + list(alternative_names)
 | |
|         self.labels = labels  # OK not to clone as we never write it
 | |
| 
 | |
|     def dimension(self):
 | |
|         return len(self.labels)
 | |
| 
 | |
|     def is_scalar(self):
 | |
|         return not len(self.labels)
 | |
| 
 | |
|     def _render_labelvalue(self, value):
 | |
|         # TODO: escape backslashes, quotes and newlines
 | |
|         return '"%s"' % (value)
 | |
| 
 | |
|     def _render_key(self, values):
 | |
|         if self.is_scalar():
 | |
|             return ""
 | |
|         return "{%s}" % (
 | |
|             ",".join(["%s=%s" % (k, self._render_labelvalue(v))
 | |
|                       for k, v in zip(self.labels, values)])
 | |
|         )
 | |
| 
 | |
|     def _render_for_labels(self, label_values, value):
 | |
|         """Render this metric for a single set of labels
 | |
| 
 | |
|         Args:
 | |
|             label_values (list[str]): values for each of the labels
 | |
|             value: value of the metric at with these labels
 | |
| 
 | |
|         Returns:
 | |
|             iterable[str]: rendered metric
 | |
|         """
 | |
|         rendered_labels = self._render_key(label_values)
 | |
|         return (
 | |
|             "%s%s %.12g" % (name, rendered_labels, value)
 | |
|             for name in self._names
 | |
|         )
 | |
| 
 | |
|     def render(self):
 | |
|         """Render this metric
 | |
| 
 | |
|         Each metric is rendered as:
 | |
| 
 | |
|             name{label1="val1",label2="val2"} value
 | |
| 
 | |
|         https://prometheus.io/docs/instrumenting/exposition_formats/#text-format-details
 | |
| 
 | |
|         Returns:
 | |
|             iterable[str]: rendered metrics
 | |
|         """
 | |
|         raise NotImplementedError()
 | |
| 
 | |
| 
 | |
| class CounterMetric(BaseMetric):
 | |
|     """The simplest kind of metric; one that stores a monotonically-increasing
 | |
|     value that counts events or running totals.
 | |
| 
 | |
|     Example use cases for Counters:
 | |
|     - Number of requests processed
 | |
|     - Number of items that were inserted into a queue
 | |
|     - Total amount of data that a system has processed
 | |
|     Counters can only go up (and be reset when the process restarts).
 | |
|     """
 | |
| 
 | |
|     def __init__(self, *args, **kwargs):
 | |
|         super(CounterMetric, self).__init__(*args, **kwargs)
 | |
| 
 | |
|         # dict[list[str]]: value for each set of label values. the keys are the
 | |
|         # label values, in the same order as the labels in self.labels.
 | |
|         #
 | |
|         # (if the metric is a scalar, the (single) key is the empty list).
 | |
|         self.counts = {}
 | |
| 
 | |
|         # Scalar metrics are never empty
 | |
|         if self.is_scalar():
 | |
|             self.counts[()] = 0.
 | |
| 
 | |
|     def inc_by(self, incr, *values):
 | |
|         if len(values) != self.dimension():
 | |
|             raise ValueError(
 | |
|                 "Expected as many values to inc() as labels (%d)" % (self.dimension())
 | |
|             )
 | |
| 
 | |
|         # TODO: should assert that the tag values are all strings
 | |
| 
 | |
|         if values not in self.counts:
 | |
|             self.counts[values] = incr
 | |
|         else:
 | |
|             self.counts[values] += incr
 | |
| 
 | |
|     def inc(self, *values):
 | |
|         self.inc_by(1, *values)
 | |
| 
 | |
|     def render(self):
 | |
|         return flatten(
 | |
|             self._render_for_labels(k, self.counts[k])
 | |
|             for k in sorted(self.counts.keys())
 | |
|         )
 | |
| 
 | |
| 
 | |
| class CallbackMetric(BaseMetric):
 | |
|     """A metric that returns the numeric value returned by a callback whenever
 | |
|     it is rendered. Typically this is used to implement gauges that yield the
 | |
|     size or other state of some in-memory object by actively querying it."""
 | |
| 
 | |
|     def __init__(self, name, callback, labels=[]):
 | |
|         super(CallbackMetric, self).__init__(name, labels=labels)
 | |
| 
 | |
|         self.callback = callback
 | |
| 
 | |
|     def render(self):
 | |
|         value = self.callback()
 | |
| 
 | |
|         if self.is_scalar():
 | |
|             return list(self._render_for_labels([], value))
 | |
| 
 | |
|         return flatten(
 | |
|             self._render_for_labels(k, value[k])
 | |
|             for k in sorted(value.keys())
 | |
|         )
 | |
| 
 | |
| 
 | |
| class DistributionMetric(object):
 | |
|     """A combination of an event counter and an accumulator, which counts
 | |
|     both the number of events and accumulates the total value. Typically this
 | |
|     could be used to keep track of method-running times, or other distributions
 | |
|     of values that occur in discrete occurances.
 | |
| 
 | |
|     TODO(paul): Try to export some heatmap-style stats?
 | |
|     """
 | |
| 
 | |
|     def __init__(self, name, *args, **kwargs):
 | |
|         self.counts = CounterMetric(name + ":count", **kwargs)
 | |
|         self.totals = CounterMetric(name + ":total", **kwargs)
 | |
| 
 | |
|     def inc_by(self, inc, *values):
 | |
|         self.counts.inc(*values)
 | |
|         self.totals.inc_by(inc, *values)
 | |
| 
 | |
|     def render(self):
 | |
|         return self.counts.render() + self.totals.render()
 | |
| 
 | |
| 
 | |
| class CacheMetric(object):
 | |
|     __slots__ = ("name", "cache_name", "hits", "misses", "size_callback")
 | |
| 
 | |
|     def __init__(self, name, size_callback, cache_name):
 | |
|         self.name = name
 | |
|         self.cache_name = cache_name
 | |
| 
 | |
|         self.hits = 0
 | |
|         self.misses = 0
 | |
| 
 | |
|         self.size_callback = size_callback
 | |
| 
 | |
|     def inc_hits(self):
 | |
|         self.hits += 1
 | |
| 
 | |
|     def inc_misses(self):
 | |
|         self.misses += 1
 | |
| 
 | |
|     def render(self):
 | |
|         size = self.size_callback()
 | |
|         hits = self.hits
 | |
|         total = self.misses + self.hits
 | |
| 
 | |
|         return [
 | |
|             """%s:hits{name="%s"} %d""" % (self.name, self.cache_name, hits),
 | |
|             """%s:total{name="%s"} %d""" % (self.name, self.cache_name, total),
 | |
|             """%s:size{name="%s"} %d""" % (self.name, self.cache_name, size),
 | |
|         ]
 | |
| 
 | |
| 
 | |
| class MemoryUsageMetric(object):
 | |
|     """Keeps track of the current memory usage, using psutil.
 | |
| 
 | |
|     The class will keep the current min/max/sum/counts of rss over the last
 | |
|     WINDOW_SIZE_SEC, by polling UPDATE_HZ times per second
 | |
|     """
 | |
| 
 | |
|     UPDATE_HZ = 2  # number of times to get memory per second
 | |
|     WINDOW_SIZE_SEC = 30  # the size of the window in seconds
 | |
| 
 | |
|     def __init__(self, hs, psutil):
 | |
|         clock = hs.get_clock()
 | |
|         self.memory_snapshots = []
 | |
| 
 | |
|         self.process = psutil.Process()
 | |
| 
 | |
|         clock.looping_call(self._update_curr_values, 1000 / self.UPDATE_HZ)
 | |
| 
 | |
|     def _update_curr_values(self):
 | |
|         max_size = self.UPDATE_HZ * self.WINDOW_SIZE_SEC
 | |
|         self.memory_snapshots.append(self.process.memory_info().rss)
 | |
|         self.memory_snapshots[:] = self.memory_snapshots[-max_size:]
 | |
| 
 | |
|     def render(self):
 | |
|         if not self.memory_snapshots:
 | |
|             return []
 | |
| 
 | |
|         max_rss = max(self.memory_snapshots)
 | |
|         min_rss = min(self.memory_snapshots)
 | |
|         sum_rss = sum(self.memory_snapshots)
 | |
|         len_rss = len(self.memory_snapshots)
 | |
| 
 | |
|         return [
 | |
|             "process_psutil_rss:max %d" % max_rss,
 | |
|             "process_psutil_rss:min %d" % min_rss,
 | |
|             "process_psutil_rss:total %d" % sum_rss,
 | |
|             "process_psutil_rss:count %d" % len_rss,
 | |
|         ]
 |