329 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			Python
		
	
	
			
		
		
	
	
			329 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			Python
		
	
	
# -*- coding: utf-8 -*-
 | 
						|
# Copyright 2015, 2016 OpenMarket Ltd
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
 | 
						|
 | 
						|
from itertools import chain
 | 
						|
import logging
 | 
						|
import re
 | 
						|
 | 
						|
logger = logging.getLogger(__name__)
 | 
						|
 | 
						|
 | 
						|
def flatten(items):
 | 
						|
    """Flatten a list of lists
 | 
						|
 | 
						|
    Args:
 | 
						|
        items: iterable[iterable[X]]
 | 
						|
 | 
						|
    Returns:
 | 
						|
        list[X]: flattened list
 | 
						|
    """
 | 
						|
    return list(chain.from_iterable(items))
 | 
						|
 | 
						|
 | 
						|
class BaseMetric(object):
 | 
						|
    """Base class for metrics which report a single value per label set
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(self, name, labels=[], alternative_names=[]):
 | 
						|
        """
 | 
						|
        Args:
 | 
						|
            name (str): principal name for this metric
 | 
						|
            labels (list(str)): names of the labels which will be reported
 | 
						|
                for this metric
 | 
						|
            alternative_names (iterable(str)): list of alternative names for
 | 
						|
                 this metric. This can be useful to provide a migration path
 | 
						|
                when renaming metrics.
 | 
						|
        """
 | 
						|
        self._names = [name] + list(alternative_names)
 | 
						|
        self.labels = labels  # OK not to clone as we never write it
 | 
						|
 | 
						|
    def dimension(self):
 | 
						|
        return len(self.labels)
 | 
						|
 | 
						|
    def is_scalar(self):
 | 
						|
        return not len(self.labels)
 | 
						|
 | 
						|
    def _render_labelvalue(self, value):
 | 
						|
        return '"%s"' % (_escape_label_value(value),)
 | 
						|
 | 
						|
    def _render_key(self, values):
 | 
						|
        if self.is_scalar():
 | 
						|
            return ""
 | 
						|
        return "{%s}" % (
 | 
						|
            ",".join(["%s=%s" % (k, self._render_labelvalue(v))
 | 
						|
                      for k, v in zip(self.labels, values)])
 | 
						|
        )
 | 
						|
 | 
						|
    def _render_for_labels(self, label_values, value):
 | 
						|
        """Render this metric for a single set of labels
 | 
						|
 | 
						|
        Args:
 | 
						|
            label_values (list[object]): values for each of the labels,
 | 
						|
                (which get stringified).
 | 
						|
            value: value of the metric at with these labels
 | 
						|
 | 
						|
        Returns:
 | 
						|
            iterable[str]: rendered metric
 | 
						|
        """
 | 
						|
        rendered_labels = self._render_key(label_values)
 | 
						|
        return (
 | 
						|
            "%s%s %.12g" % (name, rendered_labels, value)
 | 
						|
            for name in self._names
 | 
						|
        )
 | 
						|
 | 
						|
    def render(self):
 | 
						|
        """Render this metric
 | 
						|
 | 
						|
        Each metric is rendered as:
 | 
						|
 | 
						|
            name{label1="val1",label2="val2"} value
 | 
						|
 | 
						|
        https://prometheus.io/docs/instrumenting/exposition_formats/#text-format-details
 | 
						|
 | 
						|
        Returns:
 | 
						|
            iterable[str]: rendered metrics
 | 
						|
        """
 | 
						|
        raise NotImplementedError()
 | 
						|
 | 
						|
 | 
						|
class CounterMetric(BaseMetric):
 | 
						|
    """The simplest kind of metric; one that stores a monotonically-increasing
 | 
						|
    value that counts events or running totals.
 | 
						|
 | 
						|
    Example use cases for Counters:
 | 
						|
    - Number of requests processed
 | 
						|
    - Number of items that were inserted into a queue
 | 
						|
    - Total amount of data that a system has processed
 | 
						|
    Counters can only go up (and be reset when the process restarts).
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(self, *args, **kwargs):
 | 
						|
        super(CounterMetric, self).__init__(*args, **kwargs)
 | 
						|
 | 
						|
        # dict[list[str]]: value for each set of label values. the keys are the
 | 
						|
        # label values, in the same order as the labels in self.labels.
 | 
						|
        #
 | 
						|
        # (if the metric is a scalar, the (single) key is the empty tuple).
 | 
						|
        self.counts = {}
 | 
						|
 | 
						|
        # Scalar metrics are never empty
 | 
						|
        if self.is_scalar():
 | 
						|
            self.counts[()] = 0.
 | 
						|
 | 
						|
    def inc_by(self, incr, *values):
 | 
						|
        if len(values) != self.dimension():
 | 
						|
            raise ValueError(
 | 
						|
                "Expected as many values to inc() as labels (%d)" % (self.dimension())
 | 
						|
            )
 | 
						|
 | 
						|
        # TODO: should assert that the tag values are all strings
 | 
						|
 | 
						|
        if values not in self.counts:
 | 
						|
            self.counts[values] = incr
 | 
						|
        else:
 | 
						|
            self.counts[values] += incr
 | 
						|
 | 
						|
    def inc(self, *values):
 | 
						|
        self.inc_by(1, *values)
 | 
						|
 | 
						|
    def render(self):
 | 
						|
        return flatten(
 | 
						|
            self._render_for_labels(k, self.counts[k])
 | 
						|
            for k in sorted(self.counts.keys())
 | 
						|
        )
 | 
						|
 | 
						|
 | 
						|
class GaugeMetric(BaseMetric):
 | 
						|
    """A metric that can go up or down
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(self, *args, **kwargs):
 | 
						|
        super(GaugeMetric, self).__init__(*args, **kwargs)
 | 
						|
 | 
						|
        # dict[list[str]]: value for each set of label values. the keys are the
 | 
						|
        # label values, in the same order as the labels in self.labels.
 | 
						|
        #
 | 
						|
        # (if the metric is a scalar, the (single) key is the empty tuple).
 | 
						|
        self.guages = {}
 | 
						|
 | 
						|
    def set(self, v, *values):
 | 
						|
        if len(values) != self.dimension():
 | 
						|
            raise ValueError(
 | 
						|
                "Expected as many values to inc() as labels (%d)" % (self.dimension())
 | 
						|
            )
 | 
						|
 | 
						|
        # TODO: should assert that the tag values are all strings
 | 
						|
 | 
						|
        self.guages[values] = v
 | 
						|
 | 
						|
    def render(self):
 | 
						|
        return flatten(
 | 
						|
            self._render_for_labels(k, self.guages[k])
 | 
						|
            for k in sorted(self.guages.keys())
 | 
						|
        )
 | 
						|
 | 
						|
 | 
						|
class CallbackMetric(BaseMetric):
 | 
						|
    """A metric that returns the numeric value returned by a callback whenever
 | 
						|
    it is rendered. Typically this is used to implement gauges that yield the
 | 
						|
    size or other state of some in-memory object by actively querying it."""
 | 
						|
 | 
						|
    def __init__(self, name, callback, labels=[]):
 | 
						|
        super(CallbackMetric, self).__init__(name, labels=labels)
 | 
						|
 | 
						|
        self.callback = callback
 | 
						|
 | 
						|
    def render(self):
 | 
						|
        try:
 | 
						|
            value = self.callback()
 | 
						|
        except Exception:
 | 
						|
            logger.exception("Failed to render %s", self.name)
 | 
						|
            return ["# FAILED to render " + self.name]
 | 
						|
 | 
						|
        if self.is_scalar():
 | 
						|
            return list(self._render_for_labels([], value))
 | 
						|
 | 
						|
        return flatten(
 | 
						|
            self._render_for_labels(k, value[k])
 | 
						|
            for k in sorted(value.keys())
 | 
						|
        )
 | 
						|
 | 
						|
 | 
						|
class DistributionMetric(object):
 | 
						|
    """A combination of an event counter and an accumulator, which counts
 | 
						|
    both the number of events and accumulates the total value. Typically this
 | 
						|
    could be used to keep track of method-running times, or other distributions
 | 
						|
    of values that occur in discrete occurances.
 | 
						|
 | 
						|
    TODO(paul): Try to export some heatmap-style stats?
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(self, name, *args, **kwargs):
 | 
						|
        self.counts = CounterMetric(name + ":count", **kwargs)
 | 
						|
        self.totals = CounterMetric(name + ":total", **kwargs)
 | 
						|
 | 
						|
    def inc_by(self, inc, *values):
 | 
						|
        self.counts.inc(*values)
 | 
						|
        self.totals.inc_by(inc, *values)
 | 
						|
 | 
						|
    def render(self):
 | 
						|
        return self.counts.render() + self.totals.render()
 | 
						|
 | 
						|
 | 
						|
class CacheMetric(object):
 | 
						|
    __slots__ = (
 | 
						|
        "name", "cache_name", "hits", "misses", "evicted_size", "size_callback",
 | 
						|
    )
 | 
						|
 | 
						|
    def __init__(self, name, size_callback, cache_name):
 | 
						|
        self.name = name
 | 
						|
        self.cache_name = cache_name
 | 
						|
 | 
						|
        self.hits = 0
 | 
						|
        self.misses = 0
 | 
						|
        self.evicted_size = 0
 | 
						|
 | 
						|
        self.size_callback = size_callback
 | 
						|
 | 
						|
    def inc_hits(self):
 | 
						|
        self.hits += 1
 | 
						|
 | 
						|
    def inc_misses(self):
 | 
						|
        self.misses += 1
 | 
						|
 | 
						|
    def inc_evictions(self, size=1):
 | 
						|
        self.evicted_size += size
 | 
						|
 | 
						|
    def render(self):
 | 
						|
        size = self.size_callback()
 | 
						|
        hits = self.hits
 | 
						|
        total = self.misses + self.hits
 | 
						|
 | 
						|
        return [
 | 
						|
            """%s:hits{name="%s"} %d""" % (self.name, self.cache_name, hits),
 | 
						|
            """%s:total{name="%s"} %d""" % (self.name, self.cache_name, total),
 | 
						|
            """%s:size{name="%s"} %d""" % (self.name, self.cache_name, size),
 | 
						|
            """%s:evicted_size{name="%s"} %d""" % (
 | 
						|
                self.name, self.cache_name, self.evicted_size
 | 
						|
            ),
 | 
						|
        ]
 | 
						|
 | 
						|
 | 
						|
class MemoryUsageMetric(object):
 | 
						|
    """Keeps track of the current memory usage, using psutil.
 | 
						|
 | 
						|
    The class will keep the current min/max/sum/counts of rss over the last
 | 
						|
    WINDOW_SIZE_SEC, by polling UPDATE_HZ times per second
 | 
						|
    """
 | 
						|
 | 
						|
    UPDATE_HZ = 2  # number of times to get memory per second
 | 
						|
    WINDOW_SIZE_SEC = 30  # the size of the window in seconds
 | 
						|
 | 
						|
    def __init__(self, hs, psutil):
 | 
						|
        clock = hs.get_clock()
 | 
						|
        self.memory_snapshots = []
 | 
						|
 | 
						|
        self.process = psutil.Process()
 | 
						|
 | 
						|
        clock.looping_call(self._update_curr_values, 1000 / self.UPDATE_HZ)
 | 
						|
 | 
						|
    def _update_curr_values(self):
 | 
						|
        max_size = self.UPDATE_HZ * self.WINDOW_SIZE_SEC
 | 
						|
        self.memory_snapshots.append(self.process.memory_info().rss)
 | 
						|
        self.memory_snapshots[:] = self.memory_snapshots[-max_size:]
 | 
						|
 | 
						|
    def render(self):
 | 
						|
        if not self.memory_snapshots:
 | 
						|
            return []
 | 
						|
 | 
						|
        max_rss = max(self.memory_snapshots)
 | 
						|
        min_rss = min(self.memory_snapshots)
 | 
						|
        sum_rss = sum(self.memory_snapshots)
 | 
						|
        len_rss = len(self.memory_snapshots)
 | 
						|
 | 
						|
        return [
 | 
						|
            "process_psutil_rss:max %d" % max_rss,
 | 
						|
            "process_psutil_rss:min %d" % min_rss,
 | 
						|
            "process_psutil_rss:total %d" % sum_rss,
 | 
						|
            "process_psutil_rss:count %d" % len_rss,
 | 
						|
        ]
 | 
						|
 | 
						|
 | 
						|
def _escape_character(m):
 | 
						|
    """Replaces a single character with its escape sequence.
 | 
						|
 | 
						|
    Args:
 | 
						|
        m (re.MatchObject): A match object whose first group is the single
 | 
						|
            character to replace
 | 
						|
 | 
						|
    Returns:
 | 
						|
        str
 | 
						|
    """
 | 
						|
    c = m.group(1)
 | 
						|
    if c == "\\":
 | 
						|
        return "\\\\"
 | 
						|
    elif c == "\"":
 | 
						|
        return "\\\""
 | 
						|
    elif c == "\n":
 | 
						|
        return "\\n"
 | 
						|
    return c
 | 
						|
 | 
						|
 | 
						|
def _escape_label_value(value):
 | 
						|
    """Takes a label value and escapes quotes, newlines and backslashes
 | 
						|
    """
 | 
						|
    return re.sub(r"([\n\"\\])", _escape_character, str(value))
 |