227 lines
7.4 KiB
Python
227 lines
7.4 KiB
Python
# Copyright 2015, 2016 OpenMarket Ltd
|
|
# Copyright 2019, 2020 The Matrix.org Foundation C.I.C.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import collections
|
|
import logging
|
|
import typing
|
|
from enum import Enum, auto
|
|
from sys import intern
|
|
from typing import Any, Callable, Dict, List, Optional, Sized, TypeVar
|
|
|
|
import attr
|
|
from prometheus_client.core import Gauge
|
|
|
|
from synapse.config.cache import add_resizable_cache
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
# Whether to track estimated memory usage of the LruCaches.
|
|
TRACK_MEMORY_USAGE = False
|
|
|
|
|
|
caches_by_name: Dict[str, Sized] = {}
|
|
collectors_by_name: Dict[str, "CacheMetric"] = {}
|
|
|
|
cache_size = Gauge("synapse_util_caches_cache_size", "", ["name"])
|
|
cache_hits = Gauge("synapse_util_caches_cache_hits", "", ["name"])
|
|
cache_evicted = Gauge("synapse_util_caches_cache_evicted_size", "", ["name", "reason"])
|
|
cache_total = Gauge("synapse_util_caches_cache_total", "", ["name"])
|
|
cache_max_size = Gauge("synapse_util_caches_cache_max_size", "", ["name"])
|
|
cache_memory_usage = Gauge(
|
|
"synapse_util_caches_cache_size_bytes",
|
|
"Estimated memory usage of the caches",
|
|
["name"],
|
|
)
|
|
|
|
response_cache_size = Gauge("synapse_util_caches_response_cache_size", "", ["name"])
|
|
response_cache_hits = Gauge("synapse_util_caches_response_cache_hits", "", ["name"])
|
|
response_cache_evicted = Gauge(
|
|
"synapse_util_caches_response_cache_evicted_size", "", ["name", "reason"]
|
|
)
|
|
response_cache_total = Gauge("synapse_util_caches_response_cache_total", "", ["name"])
|
|
|
|
|
|
class EvictionReason(Enum):
|
|
size = auto()
|
|
time = auto()
|
|
invalidation = auto()
|
|
|
|
|
|
@attr.s(slots=True, auto_attribs=True)
|
|
class CacheMetric:
|
|
|
|
_cache: Sized
|
|
_cache_type: str
|
|
_cache_name: str
|
|
_collect_callback: Optional[Callable]
|
|
|
|
hits: int = 0
|
|
misses: int = 0
|
|
eviction_size_by_reason: typing.Counter[EvictionReason] = attr.ib(
|
|
factory=collections.Counter
|
|
)
|
|
memory_usage: Optional[int] = None
|
|
|
|
def inc_hits(self) -> None:
|
|
self.hits += 1
|
|
|
|
def inc_misses(self) -> None:
|
|
self.misses += 1
|
|
|
|
def inc_evictions(self, reason: EvictionReason, size: int = 1) -> None:
|
|
self.eviction_size_by_reason[reason] += size
|
|
|
|
def inc_memory_usage(self, memory: int) -> None:
|
|
if self.memory_usage is None:
|
|
self.memory_usage = 0
|
|
|
|
self.memory_usage += memory
|
|
|
|
def dec_memory_usage(self, memory: int) -> None:
|
|
assert self.memory_usage is not None
|
|
self.memory_usage -= memory
|
|
|
|
def clear_memory_usage(self) -> None:
|
|
if self.memory_usage is not None:
|
|
self.memory_usage = 0
|
|
|
|
def describe(self) -> List[str]:
|
|
return []
|
|
|
|
def collect(self) -> None:
|
|
try:
|
|
if self._cache_type == "response_cache":
|
|
response_cache_size.labels(self._cache_name).set(len(self._cache))
|
|
response_cache_hits.labels(self._cache_name).set(self.hits)
|
|
for reason in EvictionReason:
|
|
response_cache_evicted.labels(self._cache_name, reason.name).set(
|
|
self.eviction_size_by_reason[reason]
|
|
)
|
|
response_cache_total.labels(self._cache_name).set(
|
|
self.hits + self.misses
|
|
)
|
|
else:
|
|
cache_size.labels(self._cache_name).set(len(self._cache))
|
|
cache_hits.labels(self._cache_name).set(self.hits)
|
|
for reason in EvictionReason:
|
|
cache_evicted.labels(self._cache_name, reason.name).set(
|
|
self.eviction_size_by_reason[reason]
|
|
)
|
|
cache_total.labels(self._cache_name).set(self.hits + self.misses)
|
|
max_size = getattr(self._cache, "max_size", None)
|
|
if max_size:
|
|
cache_max_size.labels(self._cache_name).set(max_size)
|
|
|
|
if TRACK_MEMORY_USAGE:
|
|
# self.memory_usage can be None if nothing has been inserted
|
|
# into the cache yet.
|
|
cache_memory_usage.labels(self._cache_name).set(
|
|
self.memory_usage or 0
|
|
)
|
|
if self._collect_callback:
|
|
self._collect_callback()
|
|
except Exception as e:
|
|
logger.warning("Error calculating metrics for %s: %s", self._cache_name, e)
|
|
raise
|
|
|
|
|
|
def register_cache(
|
|
cache_type: str,
|
|
cache_name: str,
|
|
cache: Sized,
|
|
collect_callback: Optional[Callable] = None,
|
|
resizable: bool = True,
|
|
resize_callback: Optional[Callable] = None,
|
|
) -> CacheMetric:
|
|
"""Register a cache object for metric collection and resizing.
|
|
|
|
Args:
|
|
cache_type: a string indicating the "type" of the cache. This is used
|
|
only for deduplication so isn't too important provided it's constant.
|
|
cache_name: name of the cache
|
|
cache: cache itself, which must implement __len__(), and may optionally implement
|
|
a max_size property
|
|
collect_callback: If given, a function which is called during metric
|
|
collection to update additional metrics.
|
|
resizable: Whether this cache supports being resized, in which case either
|
|
resize_callback must be provided, or the cache must support set_max_size().
|
|
resize_callback: A function which can be called to resize the cache.
|
|
|
|
Returns:
|
|
CacheMetric: an object which provides inc_{hits,misses,evictions} methods
|
|
"""
|
|
if resizable:
|
|
if not resize_callback:
|
|
resize_callback = cache.set_cache_factor # type: ignore
|
|
add_resizable_cache(cache_name, resize_callback)
|
|
|
|
metric = CacheMetric(cache, cache_type, cache_name, collect_callback)
|
|
metric_name = "cache_%s_%s" % (cache_type, cache_name)
|
|
caches_by_name[cache_name] = cache
|
|
collectors_by_name[metric_name] = metric
|
|
return metric
|
|
|
|
|
|
KNOWN_KEYS = {
|
|
key: key
|
|
for key in (
|
|
"auth_events",
|
|
"content",
|
|
"depth",
|
|
"event_id",
|
|
"hashes",
|
|
"origin",
|
|
"origin_server_ts",
|
|
"prev_events",
|
|
"room_id",
|
|
"sender",
|
|
"signatures",
|
|
"state_key",
|
|
"type",
|
|
"unsigned",
|
|
"user_id",
|
|
)
|
|
}
|
|
|
|
T = TypeVar("T", Optional[str], str)
|
|
|
|
|
|
def intern_string(string: T) -> T:
|
|
"""Takes a (potentially) unicode string and interns it if it's ascii"""
|
|
if string is None:
|
|
return None
|
|
|
|
try:
|
|
return intern(string)
|
|
except UnicodeEncodeError:
|
|
return string
|
|
|
|
|
|
def intern_dict(dictionary: Dict[str, Any]) -> Dict[str, Any]:
|
|
"""Takes a dictionary and interns well known keys and their values"""
|
|
return {
|
|
KNOWN_KEYS.get(key, key): _intern_known_values(key, value)
|
|
for key, value in dictionary.items()
|
|
}
|
|
|
|
|
|
def _intern_known_values(key: str, value: Any) -> Any:
|
|
intern_keys = ("event_id", "room_id", "sender", "user_id", "type", "state_key")
|
|
|
|
if key in intern_keys:
|
|
return intern_string(value)
|
|
|
|
return value
|