14 KiB
Settings Reference
This document serves as developer documentation for using "Granular Settings". Granular Settings allow users to specify different values for a setting at particular levels of interest. For example, a user may say that in a particular room they want URL previews off, but in all other rooms they want them enabled. The SettingsStore
helps mask the complexity of dealing with the different levels and exposes easy to use getters and setters.
Levels
Granular Settings rely on a series of known levels in order to use the correct value for the scenario. These levels, in order of prioirty, are:
device
- The current user's deviceroom-device
- The current user's device, but only when in a specific roomroom-account
- The current user's account, but only when in a specific roomaccount
- The current user's accountroom
- A specific room (setting for all members of the room)config
- Values are defined byconfig.json
default
- The hardcoded default for the settings
Individual settings may control which levels are appropriate for them as part of the defaults. This is often to ensure that room administrators cannot force account-only settings upon participants.
Settings
Settings are the different options a user may set or experience in the application. These are pre-defined in src/settings/Settings.js
under the SETTINGS
constant and have the following minimum requirements:
// The ID is used to reference the setting throughout the application. This must be unique.
"theSettingId": {
// The levels this setting supports is required. In `src/settings/Settings.js` there are various pre-set arrays
// for this option - they should be used where possible to avoid copy/pasting arrays across settings.
supportedLevels: [...],
// The default for this setting serves two purposes: It provides a value if the setting is not defined at other
// levels, and it serves to demonstrate the expected type to other developers. The value isn't enforced, but it
// should be respected throughout the code. The default may be any data type.
default: false,
// The display name has two notations: string and object. The object notation allows for different translatable
// strings to be used for different levels, while the string notation represents the string for all levels.
displayName: _td("Change something"), // effectively `displayName: { "default": _td("Change something") }`
displayName: {
"room": _td("Change something for participants of this room"),
// Note: the default will be used if the level requested (such as `device`) does not have a string defined here.
"default": _td("Change something"),
}
}
Getting values for a setting
After importing SettingsStore
, simply make a call to SettingsStore.getValue
. The roomId
parameter should always be supplied where possible, even if the setting does not have a per-room level value. This is to ensure that the value returned is best represented in the room, particularly if the setting ever gets a per-room level in the future.
In settings pages it is often desired to have the value at a particular level instead of getting the calculated value. Call SettingsStore.getValueAt
to get the value of a setting at a particular level, and optionally make it explicitly at that level. By default getValueAt
will traverse the tree starting at the provided level; making it explicit means it will not go beyond the provided level. When using getValueAt
, please be sure to use SettingLevel
to represent the target level.
Setting values for a setting
Values are defined at particular levels and should be done in a safe manner. There are two checks to perform to ensure a clean save: is the level supported and can the user actually set the value. In most cases, neither should be an issue although there are circumstances where this changes. An example of a safe call is:
const isSupported = SettingsStore.isLevelSupported(SettingLevel.ROOM);
if (isSupported) {
const canSetValue = SettingsStore.canSetValue("mySetting", "!curbf:matrix.org", SettingLevel.ROOM);
if (canSetValue) {
SettingsStore.setValue("mySetting", "!curbf:matrix.org", SettingLevel.ROOM, newValue);
}
}
These checks may also be performed in different areas of the application to avoid the verbose example above. For instance, the component which allows changing the setting may be hidden conditionally on the above conditions.
SettingsFlag
component
Where possible, the SettingsFlag
component should be used to set simple "flip-a-bit" (true/false) settings. The SettingsFlag
also supports simple radio button options, such as the theme the user would like to use.
<SettingsFlag name="theSettingId"
level={SettingsLevel.ROOM}
roomId="!curbf:matrix.org"
label={_td("Your label here")} // optional, if falsey then the `SettingsStore` will be used
onChange={function(newValue) { }} // optional, called after saving
isExplicit={false} // this is passed along to `SettingsStore.getValueAt`, defaulting to false
manualSave={false} // if true, saving is delayed. You will need to call .save() on this component
// Options for radio buttons
group="your-radio-group" // this enables radio button support
value="yourValueHere" // the value for this particular option
/>
Getting the display name for a setting
Simply call SettingsStore.getDisplayName
. The appropriate display name will be returned and automatically translated for you. If a display name cannot be found, it will return null
.
Features
Occasionally some parts of the application may be undergoing testing and are not quite production ready. These are commonly known to be behind a "labs flag". Features behind lab flags must go through the granular settings system, and look and act very much normal settings. The exception is that they must supply isFeature: true
as part of the setting definition and should go through the helper functions on SettingsStore
.
Although features have levels and a default value, the calculation of those options is blocked by the feature's state. A feature's state is determined from the SdkConfig
and is a little complex. If enableLabs
(a legacy flag) is true
then the feature's state is labs
, if it is false
, the state is disable
. If enableLabs
is not set then the state is determined from the features
config, such as in the following:
"features": {
"feature_lazyloading": "labs"
}
In this example, feature_lazyloading
is in the labs
state. It may also be in the enable
or disable
state with a similar approach. If the state is invalid, the feature is in the disable
state. A feature's levels are only calculated if it is in the labs
state, therefore the default only applies in that scenario. If the state is enable
, the feature is always-on.
Once a feature flag has served its purpose, it is generally recommended to remove it and the associated feature flag checks. This would enable the feature implicitly as it is part of the application now.
Determining if a feature is enabled
A simple call to SettingsStore.isFeatureEnabled
will tell you if the feature is enabled. This will perform all the required calculations to determine if the feature is enabled based upon the configuration and user selection.
Enabling a feature
Features can only be enabled if the feature is in the labs
state, otherwise this is a no-op. To find the current set of features in the labs
state, call SettingsStore.getLabsFeatures
. To set the value, call SettingsStore.setFeatureEnabled
.
Setting controllers
Settings may have environmental factors that affect their value or need additional code to be called when they are modified. A setting controller is able to override the calculated value for a setting and react to changes in that setting. Controllers are not a replacement for the level handlers and should only be used to ensure the environment is kept up to date with the setting where it is otherwise not possible. An example of this is the notification settings: they can only be considered enabled if the platform supports notifications, and enabling notifications requires additional steps to actually enable notifications.
For more information, see src/settings/controllers/SettingController.js
.
Local echo
SettingsStore
will perform local echo on all settings to ensure that immediately getting values does not cause a split-brain scenario. As mentioned in the "Setting values for a setting" section, the appropriate checks should be done to ensure that the user is allowed to set the value. The local echo system assumes that the user has permission and that the request will go through successfully. The local echo only takes effect until the request to save a setting has completed (either successfully or otherwise).
SettingsStore.setValue(...).then(() => {
// The value has actually been stored at this point.
});
SettingsStore.getValue(...); // this will return the value set in `setValue` above.
Watching for changes
Most use cases do not need to set up a watcher because they are able to react to changes as they are made, or the changes which are made are not significant enough for it to matter. Watchers are intended to be used in scenarios where it is important to react to changes made by other logged in devices. Typically, this would be done within the component itself, however the component should not be aware of the intricacies of setting inversion or remapping to particular data structures. Instead, a generic watcher interface is provided on SettingsStore
to watch (and subsequently unwatch) for changes in a setting.
An example of a watcher in action would be:
class MyComponent extends React.Component {
settingWatcherRef = null;
componentWillMount() {
this.settingWatcherRef = SettingsStore.watchSetting("roomColor", "!example:matrix.org", (settingName, roomId, level, newVal) => {
// Always re-read the setting value from the store to avoid reacting to changes which do not have a consequence. For example, the
// room color could have been changed at the device level, but an account override prevents that change from making a difference.
const actualVal = SettingsStore.getValue(settingName, "!example:matrix.org");
if (actualVal !== this.state.color) this.setState({color: actualVal});
});
}
componentWillUnmount() {
SettingsStore.unwatchSetting(this.settingWatcherRef);
}
}
Maintainers Reference
The granular settings system has a few complex parts to power it. This section is to document how the SettingsStore
is supposed to work.
General information
The SettingsStore
uses the hardcoded LEVEL_ORDER
constant to ensure that it is using the correct override procedure. The array is checked from left to right, simulating the behaviour of overriding values from the higher levels. Each level should be defined in this array, including default
.
Handlers (src/settings/handlers/SettingsHandler.js
) represent a single level and are responsible for getting and setting values at that level. Handlers also provide additional information to the SettingsStore
such as if the level is supported or if the current user may set values at the level. The SettingsStore
will use the handler to enforce checks and manipulate settings. Handlers are also responsible for dealing with migration patterns or legacy settings for their level (for example, a setting being renamed or using a different key from other settings in the underlying store). Handlers are provided to the SettingsStore
via the LEVEL_HANDLERS
constant. SettingsStore
will optimize lookups by only considering handlers that are supported on the platform.
Local echo is achieved through src/settings/handlers/LocalEchoWrapper.js
which acts as a wrapper around a given handler. This is automatically applied to all defined LEVEL_HANDLERS
and proxies the calls to the wrapped handler where possible. The echo is achieved by a simple object cache stored within the class itself. The cache is invalidated immediately upon the proxied save call succeeding or failing.
Controllers are notified of changes by the SettingsStore
, and are given the opportunity to override values after the SettingsStore
has deemed the value calculated. Controllers are invoked as the last possible step in the code.
Features
Features automatically get considered as disabled
if they are not listed in the SdkConfig
or enable_labs
is false/not set. Features are always checked against the configuration before going through the level order as they have the option of being forced-on or forced-off for the application. This is done by the features
section and looks something like this:
"features": {
"feature_groups": "enable",
"feature_pinning": "disable", // the default
"feature_presence": "labs"
}
If enableLabs
is true in the configuration, the default for features becomes "labs"
.
Watchers
Watchers can appear complicated under the hood: the request to watch a setting is actually forked off to individual handlers for watching. This means that the handlers need to track their changes and listen for remote changes where possible, but also makes it much easier for the SettingsStore
to react to changes. The handler is going to know the best things to listen for (specific events, account data, etc) and thus it is left as a responsibility for the handler to track changes.
In practice, handlers which rely on remote changes (account data, room events, etc) will always attach a listener to the MatrixClient
. They then watch for changes to events they care about and send off appropriate updates to the generalized WatchManager
- a class specifically designed to deduplicate the logic of managing watchers. The handlers which are localized to the local client (device) generally just trigger the WatchManager
when they manipulate the setting themselves as there's nothing to really 'watch'.