- Sample code

master
Steve Clement 2013-07-25 18:11:52 +02:00
parent 60c69a902b
commit 4b5f5c9a68
5 changed files with 539 additions and 0 deletions

116
PoC/VdL_demo/main.ino Normal file
View File

@ -0,0 +1,116 @@
#include "Adafruit_GFX.h"
#include "RGBmatrixPanel.h"
#define CLK 8
#define LAT A3
#define OE 9
#define SIZEOF_BITMAP 24
#define N 0
#define O 1
#define T 2
#define R 3
#define P 4
#define I 5
#define C 6
#define D 7
#define E 8
#define S 9
#define G 10
#define Y 3
extern prog_uchar pacman_bitmaps[];
extern prog_uchar letter_bitmaps[];
extern prog_uchar invader_bitmaps[];
RGBmatrixPanel matrix(A0, A1, A2, CLK, LAT, OE, true);
uint16_t black = matrix.Color444(0, 0, 0);
uint16_t yellow = matrix.Color444(15, 15, 0);
uint16_t darkyellow = matrix.Color444(1, 1, 0);
uint16_t red = matrix.Color444(15, 0, 0);
uint16_t white = matrix.Color444(15, 15, 15);
uint16_t pink = matrix.Color444(15, 3, 15);
uint16_t palePink = matrix.Color444(15, 8, 15);
uint16_t blue = matrix.Color444(0, 0, 10);
uint16_t cyan = matrix.Color444(0, 15, 15);
uint16_t orange = matrix.Color444(15, 5, 0);
uint16_t darkOrange = matrix.Color444(15, 1, 0);
uint16_t green = matrix.Color444(0, 15, 0);
int direction = 1;
int biteDirection = 1; //opening or closing
int dotsY = 8;
unsigned long loopCounter = 0;
boolean didChange = false;
boolean caught = false;
uint16_t pillColor = palePink;
unsigned char *letterBitmaps[] = {(letter_bitmaps), (letter_bitmaps+18), (letter_bitmaps+36), (letter_bitmaps+54), (letter_bitmaps+72), (letter_bitmaps+94), (letter_bitmaps+104), (letter_bitmaps+122), (letter_bitmaps+140), (letter_bitmaps+158), (letter_bitmaps+176)};
void setup() {
matrix.begin();
}
void loop() {
nootropicDesign();
clear();
matrix.swapBuffers(false);
delay(500);
}
void nootropicDesign() {
int y = 1;
int offset = 0;
for(int x=32;x>-140;x--) {
offset = 0;
clear();
offset += drawBitmap(x+offset, y, letterBitmaps[N], darkOrange) + 1;
offset += drawBitmap(x+offset, y, letterBitmaps[O], darkOrange) + 1;
offset += drawBitmap(x+offset, y, letterBitmaps[O], darkOrange) + 1;
offset += drawBitmap(x+offset, y, letterBitmaps[T], darkOrange) + 1;
offset += drawBitmap(x+offset, y, letterBitmaps[R], darkOrange) + 1;
offset += drawBitmap(x+offset, y, letterBitmaps[O], darkOrange) + 1;
offset += drawBitmap(x+offset, y, letterBitmaps[P], darkOrange) + 1;
offset += drawBitmap(x+offset, y, letterBitmaps[I], darkOrange) + 1;
offset += drawBitmap(x+offset, y, letterBitmaps[C], darkOrange) + 1;
offset += 3;
offset += drawBitmap(x+offset, y, letterBitmaps[D], darkOrange) + 1;
offset += drawBitmap(x+offset, y, letterBitmaps[E], darkOrange) + 1;
offset += drawBitmap(x+offset, y, letterBitmaps[S], darkOrange) + 1;
offset += drawBitmap(x+offset, y, letterBitmaps[I], darkOrange) + 1;
offset += drawBitmap(x+offset, y, letterBitmaps[G], darkOrange) + 1;
offset += drawBitmap(x+offset, y, letterBitmaps[N], darkOrange) + 1;
matrix.swapBuffers(false);
delay(15);
}
}
void clear() {
matrix.fillScreen(black);
}
uint8_t drawBitmap(int x, int y, unsigned char *bmp, uint16_t color) {
uint8_t width = pgm_read_byte(bmp);
uint8_t height = pgm_read_byte(bmp+1);
unsigned char *p = bmp+2;
uint8_t b;
uint8_t bit;
for (uint8_t j=0;j<height;j++) {
for (uint8_t i=0;i<width;i++) {
if ((i % 8) == 0) {
b = pgm_read_byte(p);
p++;
bit = 7;
}
if ((b >> bit) & 0x1) {
matrix.drawPixel(x+i, y+j, color);
}
bit--;
}
}
return width;
}

16
PoC/VdL_demo/pixel.cpp Normal file
View File

@ -0,0 +1,16 @@
#include <avr/pgmspace.h>
PROGMEM prog_uchar pixel_bitmaps[] = {
// n
9,8,
0b11111111,0b11111111,
0b11111111,0b11111111,
0b11111111,0b11111111,
0b11111111,0b11111111,
0b11111111,0b11111111,
0b11111111,0b11111111,
0b11111111,0b11111111,
0b11111111,0b11111111,
};

88
PoC/shiftout1.ino Normal file
View File

@ -0,0 +1,88 @@
//**************************************************************//
// Name : shiftOutCode, Dual Binary Counters //
// Author : Carlyn Maw, Tom Igoe //
// Date : 25 Oct, 2006 //
// Version : 1.0 //
// Notes : Code for using a 74HC595 Shift Register //
// : to count from 0 to 255 //
//**************************************************************//
//Pin connected to ST_CP of 74HC595
int latchPin = 8;
//Pin connected to SH_CP of 74HC595
int clockPin = 12;
////Pin connected to DS of 74HC595
int dataPin = 11;
void setup() {
//Start Serial for debuging purposes
Serial.begin(9600);
//set pins to output because they are addressed in the main loop
pinMode(latchPin, OUTPUT);
}
void loop() {
//count up routine
for (int j = 0; j < 256; j++) {
//ground latchPin and hold low for as long as you are transmitting
digitalWrite(latchPin, 0);
//count up on GREEN LEDs
shiftOut(dataPin, clockPin, j);
//count down on RED LEDs
shiftOut(dataPin, clockPin, 255-j);
//return the latch pin high to signal chip that it
//no longer needs to listen for information
digitalWrite(latchPin, 1);
delay(1000);
}
}
void shiftOut(int myDataPin, int myClockPin, byte myDataOut) {
// This shifts 8 bits out MSB first,
//on the rising edge of the clock,
//clock idles low
..//internal function setup
int i=0;
int pinState;
pinMode(myClockPin, OUTPUT);
pinMode(myDataPin, OUTPUT);
. //clear everything out just in case to
. //prepare shift register for bit shifting
digitalWrite(myDataPin, 0);
digitalWrite(myClockPin, 0);
//for each bit in the byte myDataOut<75>
//NOTICE THAT WE ARE COUNTING DOWN in our for loop
//This means that %00000001 or "1" will go through such
//that it will be pin Q0 that lights.
for (i=7; i>=0; i--) {
digitalWrite(myClockPin, 0);
//if the value passed to myDataOut and a bitmask result
// true then... so if we are at i=6 and our value is
// %11010100 it would the code compares it to %01000000
// and proceeds to set pinState to 1.
if ( myDataOut & (1<<i) ) {
pinState= 1;
}
else {
pinState= 0;
}
//Sets the pin to HIGH or LOW depending on pinState
digitalWrite(myDataPin, pinState);
//register shifts bits on upstroke of clock pin
digitalWrite(myClockPin, 1);
//zero the data pin after shift to prevent bleed through
digitalWrite(myDataPin, 0);
}
//stop shifting
digitalWrite(myClockPin, 0);
}

169
PoC/shiftout2.ino Normal file
View File

@ -0,0 +1,169 @@
//**************************************************************//
// Name : shiftOutCode, Dual One By One //
// Author : Carlyn Maw, Tom Igoe //
// Date : 25 Oct, 2006 //
// Version : 1.0 //
// Notes : Code for using a 74HC595 Shift Register //
// : to count from 0 to 255 //
//**************************************************************//
//Pin connected to ST_CP of 74HC595
int latchPin = 8;
//Pin connected to SH_CP of 74HC595
int clockPin = 12;
////Pin connected to DS of 74HC595
int dataPin = 11;
//holder for infromation you're going to pass to shifting function
byte data = 0;
void setup() {
//set pins to output because they are addressed in the main loop
pinMode(latchPin, OUTPUT);
}
void loop() {
//function that blinks all the LEDs
//gets passed the number of blinks and the pause time
blinkAll_2Bytes(1,500);
// light each pin one by one using a function A
for (int j = 0; j < 8; j++) {
//ground latchPin and hold low for as long as you are transmitting
digitalWrite(latchPin, 0);
//red LEDs
lightShiftPinA(7-j);
//green LEDs
lightShiftPinA(j);
//return the latch pin high to signal chip that it
//no longer needs to listen for information
digitalWrite(latchPin, 1);
delay(1000);
}
// light each pin one by one using a function A
for (int j = 0; j < 8; j++) {
//ground latchPin and hold low for as long as you are transmitting
digitalWrite(latchPin, 0);
//red LEDs
lightShiftPinB(j);
//green LEDs
lightShiftPinB(7-j);
//return the latch pin high to signal chip that it
//no longer needs to listen for information
digitalWrite(latchPin, 1);
delay(1000);
}
}
//This function uses bitwise math to move the pins up
void lightShiftPinA(int p) {
//defines a local variable
int pin;
//this is line uses a bitwise operator
//shifting a bit left using << is the same
//as multiplying the decimal number by two.
pin = 1<< p;
//move 'em out
shiftOut(dataPin, clockPin, pin);
}
//This function uses that fact that each bit in a byte
//is 2 times greater than the one before it to
//shift the bits higher
void lightShiftPinB(int p) {
//defines a local variable
int pin;
//start with the pin = 1 so that if 0 is passed to this
//function pin 0 will light.
pin = 1;
for (int x = 0; x < p; x++) {
pin = pin * 2;
}
//move 'em out
shiftOut(dataPin, clockPin, pin);
}
// the heart of the program
void shiftOut(int myDataPin, int myClockPin, byte myDataOut) {
// This shifts 8 bits out MSB first,
//on the rising edge of the clock,
//clock idles low
//internal function setup
int i=0;
int pinState;
pinMode(myClockPin, OUTPUT);
pinMode(myDataPin, OUTPUT);
//clear everything out just in case to
//prepare shift register for bit shifting
digitalWrite(myDataPin, 0);
digitalWrite(myClockPin, 0);
//for each bit in the byte myDataOut<75>
//NOTICE THAT WE ARE COUNTING DOWN in our for loop
//This means that %00000001 or "1" will go through such
//that it will be pin Q0 that lights.
for (i=7; i>=0; i--) {
digitalWrite(myClockPin, 0);
//if the value passed to myDataOut and a bitmask result
// true then... so if we are at i=6 and our value is
// %11010100 it would the code compares it to %01000000
// and proceeds to set pinState to 1.
if ( myDataOut & (1<<i) ) {
pinState= 1;
}
else {
pinState= 0;
}
//Sets the pin to HIGH or LOW depending on pinState
digitalWrite(myDataPin, pinState);
//register shifts bits on upstroke of clock pin
digitalWrite(myClockPin, 1);
//zero the data pin after shift to prevent bleed through
digitalWrite(myDataPin, 0);
}
//stop shifting
digitalWrite(myClockPin, 0);
}
//blinks both registers based on the number of times you want to
//blink "n" and the pause between them "d"
//starts with a moment of darkness to make sure the first blink
//has its full visual effect.
void blinkAll_2Bytes(int n, int d) {
digitalWrite(latchPin, 0);
shiftOut(dataPin, clockPin, 0);
shiftOut(dataPin, clockPin, 0);
digitalWrite(latchPin, 1);
delay(200);
for (int x = 0; x < n; x++) {
digitalWrite(latchPin, 0);
shiftOut(dataPin, clockPin, 255);
shiftOut(dataPin, clockPin, 255);
digitalWrite(latchPin, 1);
delay(d);
digitalWrite(latchPin, 0);
shiftOut(dataPin, clockPin, 0);
shiftOut(dataPin, clockPin, 0);
digitalWrite(latchPin, 1);
delay(d);
}
}

150
PoC/shiftout3.ino Normal file
View File

@ -0,0 +1,150 @@
//**************************************************************//
// Name : shiftOutCode, Predefined Dual Array Style //
// Author : Carlyn Maw, Tom Igoe //
// Date : 25 Oct, 2006 //
// Version : 1.0 //
// Notes : Code for using a 74HC595 Shift Register //
// : to count from 0 to 255 //
//****************************************************************
//Pin connected to ST_CP of 74HC595
int latchPin = 8;
//Pin connected to SH_CP of 74HC595
int clockPin = 12;
////Pin connected to DS of 74HC595
int dataPin = 11;
//holders for infromation you're going to pass to shifting function
byte dataRED;
byte dataGREEN;
byte dataArrayRED[10];
byte dataArrayGREEN[10];
void setup() {
//set pins to output because they are addressed in the main loop
pinMode(latchPin, OUTPUT);
Serial.begin(9600);
//Arduino doesn't seem to have a way to write binary straight into the code
//so these values are in HEX. Decimal would have been fine, too.
dataArrayRED[0] = 0xFF; //11111111
dataArrayRED[1] = 0xFE; //11111110
dataArrayRED[2] = 0xFC; //11111100
dataArrayRED[3] = 0xF8; //11111000
dataArrayRED[4] = 0xF0; //11110000
dataArrayRED[5] = 0xE0; //11100000
dataArrayRED[6] = 0xC0; //11000000
dataArrayRED[7] = 0x80; //10000000
dataArrayRED[8] = 0x00; //00000000
dataArrayRED[9] = 0xE0; //11100000
//Arduino doesn't seem to have a way to write binary straight into the code
//so these values are in HEX. Decimal would have been fine, too.
dataArrayGREEN[0] = 0xFF; //11111111
dataArrayGREEN[1] = 0x7F; //01111111
dataArrayGREEN[2] = 0x3F; //00111111
dataArrayGREEN[3] = 0x1F; //00011111
dataArrayGREEN[4] = 0x0F; //00001111
dataArrayGREEN[5] = 0x07; //00000111
dataArrayGREEN[6] = 0x03; //00000011
dataArrayGREEN[7] = 0x01; //00000001
dataArrayGREEN[8] = 0x00; //00000000
dataArrayGREEN[9] = 0x07; //00000111
//function that blinks all the LEDs
//gets passed the number of blinks and the pause time
blinkAll_2Bytes(2,500);
}
void loop() {
for (int j = 0; j < 10; j++) {
//load the light sequence you want from array
dataRED = dataArrayRED[j];
dataGREEN = dataArrayGREEN[j];
//ground latchPin and hold low for as long as you are transmitting
digitalWrite(latchPin, 0);
//move 'em out
shiftOut(dataPin, clockPin, dataGREEN);
shiftOut(dataPin, clockPin, dataRED);
//return the latch pin high to signal chip that it
//no longer needs to listen for information
digitalWrite(latchPin, 1);
delay(300);
}
}
// the heart of the program
void shiftOut(int myDataPin, int myClockPin, byte myDataOut) {
// This shifts 8 bits out MSB first,
//on the rising edge of the clock,
//clock idles low
//internal function setup
int i=0;
int pinState;
pinMode(myClockPin, OUTPUT);
pinMode(myDataPin, OUTPUT);
//clear everything out just in case to
//prepare shift register for bit shifting
digitalWrite(myDataPin, 0);
digitalWrite(myClockPin, 0);
//for each bit in the byte myDataOut<75>
//NOTICE THAT WE ARE COUNTING DOWN in our for loop
//This means that %00000001 or "1" will go through such
//that it will be pin Q0 that lights.
for (i=7; i>=0; i--) {
digitalWrite(myClockPin, 0);
//if the value passed to myDataOut and a bitmask result
// true then... so if we are at i=6 and our value is
// %11010100 it would the code compares it to %01000000
// and proceeds to set pinState to 1.
if ( myDataOut & (1<<i) ) {
pinState= 1;
}
else {
pinState= 0;
}
//Sets the pin to HIGH or LOW depending on pinState
digitalWrite(myDataPin, pinState);
//register shifts bits on upstroke of clock pin
digitalWrite(myClockPin, 1);
//zero the data pin after shift to prevent bleed through
digitalWrite(myDataPin, 0);
}
//stop shifting
digitalWrite(myClockPin, 0);
}
//blinks the whole register based on the number of times you want to
//blink "n" and the pause between them "d"
//starts with a moment of darkness to make sure the first blink
//has its full visual effect.
void blinkAll_2Bytes(int n, int d) {
digitalWrite(latchPin, 0);
shiftOut(dataPin, clockPin, 0);
shiftOut(dataPin, clockPin, 0);
digitalWrite(latchPin, 1);
delay(200);
for (int x = 0; x < n; x++) {
digitalWrite(latchPin, 0);
shiftOut(dataPin, clockPin, 255);
shiftOut(dataPin, clockPin, 255);
digitalWrite(latchPin, 1);
delay(d);
digitalWrite(latchPin, 0);
shiftOut(dataPin, clockPin, 0);
shiftOut(dataPin, clockPin, 0);
digitalWrite(latchPin, 1);
delay(d);
}
}