cti-python-stix2/stix2/equivalence/object/__init__.py

456 lines
16 KiB
Python

"""Python APIs for STIX 2 Object-based Semantic Equivalence."""
import logging
import time
from ...datastore import Filter
from ...utils import STIXdatetime, parse_into_datetime
logger = logging.getLogger(__name__)
def semantically_equivalent(obj1, obj2, prop_scores={}, **weight_dict):
"""This method verifies if two objects of the same type are
semantically equivalent.
Args:
obj1: A stix2 object instance
obj2: A stix2 object instance
prop_scores: A dictionary that can hold individual property scores,
weights, contributing score, matching score and sum of weights.
weight_dict: A dictionary that can be used to override settings
in the semantic equivalence process
Returns:
float: A number between 0.0 and 100.0 as a measurement of equivalence.
Warning:
Object types need to have property weights defined for the equivalence process.
Otherwise, those objects will not influence the final score. The WEIGHTS
dictionary under `stix2.equivalence.object` can give you an idea on how to add
new entries and pass them via the `weight_dict` argument. Similarly, the values
or methods can be fine tuned for a particular use case.
Note:
Default weights_dict:
.. include:: ../../object_default_sem_eq_weights.rst
Note:
This implementation follows the Semantic Equivalence Committee Note.
see `the Committee Note <link here>`__.
"""
weights = WEIGHTS.copy()
if weight_dict:
weights.update(weight_dict)
type1, type2 = obj1["type"], obj2["type"]
ignore_spec_version = weights["_internal"]["ignore_spec_version"]
if type1 != type2:
raise ValueError('The objects to compare must be of the same type!')
if ignore_spec_version is False and obj1.get("spec_version", "2.0") != obj2.get("spec_version", "2.0"):
raise ValueError('The objects to compare must be of the same spec version!')
try:
weights[type1]
except KeyError:
logger.warning("'%s' type has no 'weights' dict specified & thus no semantic equivalence method to call!", type1)
sum_weights = matching_score = 0
else:
try:
method = weights[type1]["method"]
except KeyError:
logger.debug("Starting semantic equivalence process between: '%s' and '%s'", obj1["id"], obj2["id"])
matching_score = 0.0
sum_weights = 0.0
for prop in weights[type1]:
if check_property_present(prop, obj1, obj2):
w = weights[type1][prop][0]
comp_funct = weights[type1][prop][1]
if comp_funct == partial_timestamp_based:
contributing_score = w * comp_funct(obj1[prop], obj2[prop], weights[type1]["tdelta"])
elif comp_funct == partial_location_distance:
threshold = weights[type1]["threshold"]
contributing_score = w * comp_funct(obj1["latitude"], obj1["longitude"], obj2["latitude"], obj2["longitude"], threshold)
elif comp_funct == reference_check or comp_funct == list_reference_check:
max_depth = weights["_internal"]["max_depth"]
if max_depth < 0:
continue # prevent excessive recursion
else:
weights["_internal"]["max_depth"] -= 1
ds1, ds2 = weights["_internal"]["ds1"], weights["_internal"]["ds2"]
contributing_score = w * comp_funct(obj1[prop], obj2[prop], ds1, ds2, **weights)
else:
contributing_score = w * comp_funct(obj1[prop], obj2[prop])
sum_weights += w
matching_score += contributing_score
prop_scores[prop] = {
"weight": w,
"contributing_score": contributing_score,
}
logger.debug("'%s' check -- weight: %s, contributing score: %s", prop, w, contributing_score)
prop_scores["matching_score"] = matching_score
prop_scores["sum_weights"] = sum_weights
logger.debug("Matching Score: %s, Sum of Weights: %s", matching_score, sum_weights)
else:
logger.debug("Starting semantic equivalence process between: '%s' and '%s'", obj1["id"], obj2["id"])
try:
matching_score, sum_weights = method(obj1, obj2, prop_scores, **weights[type1])
except TypeError:
# method doesn't support detailed output with prop_scores
matching_score, sum_weights = method(obj1, obj2, **weights[type1])
logger.debug("Matching Score: %s, Sum of Weights: %s", matching_score, sum_weights)
if sum_weights <= 0:
return 0
equivalence_score = (matching_score / sum_weights) * 100.0
return equivalence_score
def check_property_present(prop, obj1, obj2):
"""Helper method checks if a property is present on both objects."""
if prop == "longitude_latitude":
if all(x in obj1 and x in obj2 for x in ['latitude', 'longitude']):
return True
elif prop in obj1 and prop in obj2:
return True
return False
def partial_timestamp_based(t1, t2, tdelta):
"""Performs a timestamp-based matching via checking how close one timestamp is to another.
Args:
t1: A datetime string or STIXdatetime object.
t2: A datetime string or STIXdatetime object.
tdelta (float): A given time delta. This number is multiplied by 86400 (1 day) to
extend or shrink your time change tolerance.
Returns:
float: Number between 0.0 and 1.0 depending on match criteria.
"""
if not isinstance(t1, STIXdatetime):
t1 = parse_into_datetime(t1)
if not isinstance(t2, STIXdatetime):
t2 = parse_into_datetime(t2)
t1, t2 = time.mktime(t1.timetuple()), time.mktime(t2.timetuple())
result = 1 - min(abs(t1 - t2) / (86400 * tdelta), 1)
logger.debug("--\t\tpartial_timestamp_based '%s' '%s' tdelta: '%s'\tresult: '%s'", t1, t2, tdelta, result)
return result
def partial_list_based(l1, l2):
"""Performs a partial list matching via finding the intersection between common values.
Args:
l1: A list of values.
l2: A list of values.
Returns:
float: 1.0 if the value matches exactly, 0.0 otherwise.
"""
l1_set, l2_set = set(l1), set(l2)
result = len(l1_set.intersection(l2_set)) / max(len(l1_set), len(l2_set))
logger.debug("--\t\tpartial_list_based '%s' '%s'\tresult: '%s'", l1, l2, result)
return result
def exact_match(val1, val2):
"""Performs an exact value match based on two values
Args:
val1: A value suitable for an equality test.
val2: A value suitable for an equality test.
Returns:
float: 1.0 if the value matches exactly, 0.0 otherwise.
"""
result = 0.0
if val1 == val2:
result = 1.0
logger.debug("--\t\texact_match '%s' '%s'\tresult: '%s'", val1, val2, result)
return result
def partial_string_based(str1, str2):
"""Performs a partial string match using the Jaro-Winkler distance algorithm.
Args:
str1: A string value to check.
str2: A string value to check.
Returns:
float: Number between 0.0 and 1.0 depending on match criteria.
"""
from rapidfuzz import fuzz
result = fuzz.token_sort_ratio(str1, str2)
logger.debug("--\t\tpartial_string_based '%s' '%s'\tresult: '%s'", str1, str2, result)
return result / 100.0
def custom_pattern_based(pattern1, pattern2):
"""Performs a matching on Indicator Patterns.
Args:
pattern1: An Indicator pattern
pattern2: An Indicator pattern
Returns:
float: Number between 0.0 and 1.0 depending on match criteria.
"""
logger.warning("Indicator pattern equivalence is not fully defined; will default to zero if not completely identical")
return exact_match(pattern1, pattern2) # TODO: Implement pattern based equivalence
def partial_external_reference_based(refs1, refs2):
"""Performs a matching on External References.
Args:
refs1: A list of external references.
refs2: A list of external references.
Returns:
float: Number between 0.0 and 1.0 depending on matches.
"""
allowed = {"veris", "cve", "capec", "mitre-attack"}
matches = 0
if len(refs1) >= len(refs2):
l1 = refs1
l2 = refs2
else:
l1 = refs2
l2 = refs1
for ext_ref1 in l1:
for ext_ref2 in l2:
sn_match = False
ei_match = False
url_match = False
source_name = None
if check_property_present("source_name", ext_ref1, ext_ref2):
if ext_ref1["source_name"] == ext_ref2["source_name"]:
source_name = ext_ref1["source_name"]
sn_match = True
if check_property_present("external_id", ext_ref1, ext_ref2):
if ext_ref1["external_id"] == ext_ref2["external_id"]:
ei_match = True
if check_property_present("url", ext_ref1, ext_ref2):
if ext_ref1["url"] == ext_ref2["url"]:
url_match = True
# Special case: if source_name is a STIX defined name and either
# external_id or url match then its a perfect match and other entries
# can be ignored.
if sn_match and (ei_match or url_match) and source_name in allowed:
result = 1.0
logger.debug(
"--\t\tpartial_external_reference_based '%s' '%s'\tresult: '%s'",
refs1, refs2, result,
)
return result
# Regular check. If the source_name (not STIX-defined) or external_id or
# url matches then we consider the entry a match.
if (sn_match or ei_match or url_match) and source_name not in allowed:
matches += 1
result = matches / max(len(refs1), len(refs2))
logger.debug(
"--\t\tpartial_external_reference_based '%s' '%s'\tresult: '%s'",
refs1, refs2, result,
)
return result
def partial_location_distance(lat1, long1, lat2, long2, threshold):
"""Given two coordinates perform a matching based on its distance using the Haversine Formula.
Args:
lat1: Latitude value for first coordinate point.
lat2: Latitude value for second coordinate point.
long1: Longitude value for first coordinate point.
long2: Longitude value for second coordinate point.
threshold (float): A kilometer measurement for the threshold distance between these two points.
Returns:
float: Number between 0.0 and 1.0 depending on match.
"""
from haversine import Unit, haversine
distance = haversine((lat1, long1), (lat2, long2), unit=Unit.KILOMETERS)
result = 1 - (distance / threshold)
logger.debug(
"--\t\tpartial_location_distance '%s' '%s' threshold: '%s'\tresult: '%s'",
(lat1, long1), (lat2, long2), threshold, result,
)
return result
def _versioned_checks(ref1, ref2, ds1, ds2, **weights):
"""Checks multiple object versions if present in graph.
Maximizes for the semantic equivalence score of a particular version."""
results = {}
objects1 = ds1.query([Filter("id", "=", ref1)])
objects2 = ds2.query([Filter("id", "=", ref2)])
if len(objects1) > 0 and len(objects2) > 0:
for o1 in objects1:
for o2 in objects2:
result = semantically_equivalent(o1, o2, **weights)
if ref1 not in results:
results[ref1] = {"matched": ref2, "value": result}
elif result > results[ref1]["value"]:
results[ref1] = {"matched": ref2, "value": result}
result = results.get(ref1, {}).get("value", 0.0)
logger.debug(
"--\t\t_versioned_checks '%s' '%s'\tresult: '%s'",
ref1, ref2, result,
)
return result
def reference_check(ref1, ref2, ds1, ds2, **weights):
"""For two references, de-reference the object and perform object-based
semantic equivalence. The score influences the result of an edge check."""
type1, type2 = ref1.split("--")[0], ref2.split("--")[0]
result = 0.0
if type1 == type2:
if weights["_internal"]["versioning_checks"]:
result = _versioned_checks(ref1, ref2, ds1, ds2, **weights) / 100.0
else:
o1, o2 = ds1.get(ref1), ds2.get(ref2)
if o1 and o2:
result = semantically_equivalent(o1, o2, **weights) / 100.0
logger.debug(
"--\t\treference_check '%s' '%s'\tresult: '%s'",
ref1, ref2, result,
)
return result
def list_reference_check(refs1, refs2, ds1, ds2, **weights):
"""For objects that contain multiple references (i.e., object_refs) perform
the same de-reference procedure and perform object-based semantic equivalence.
The score influences the objects containing these references. The result is
weighted on the amount of unique objects that could 1) be de-referenced 2) """
results = {}
if len(refs1) >= len(refs2):
l1 = refs1
l2 = refs2
b1 = ds1
b2 = ds2
else:
l1 = refs2
l2 = refs1
b1 = ds2
b2 = ds1
l1.sort()
l2.sort()
for ref1 in l1:
for ref2 in l2:
type1, type2 = ref1.split("--")[0], ref2.split("--")[0]
if type1 == type2:
score = reference_check(ref1, ref2, b1, b2, **weights) * 100.0
if ref1 not in results:
results[ref1] = {"matched": ref2, "value": score}
elif score > results[ref1]["value"]:
results[ref1] = {"matched": ref2, "value": score}
result = 0.0
total_sum = sum(x["value"] for x in results.values())
max_score = len(results) * 100.0
if max_score > 0:
result = total_sum / max_score
logger.debug(
"--\t\tlist_reference_check '%s' '%s'\ttotal_sum: '%s'\tmax_score: '%s'\tresult: '%s'",
refs1, refs2, total_sum, max_score, result,
)
return result
# default weights used for the semantic equivalence process
WEIGHTS = {
"attack-pattern": {
"name": (30, partial_string_based),
"external_references": (70, partial_external_reference_based),
},
"campaign": {
"name": (60, partial_string_based),
"aliases": (40, partial_list_based),
},
"course-of-action": {
"name": (60, partial_string_based),
"external_references": (40, partial_external_reference_based),
},
"identity": {
"name": (60, partial_string_based),
"identity_class": (20, exact_match),
"sectors": (20, partial_list_based),
},
"indicator": {
"indicator_types": (15, partial_list_based),
"pattern": (80, custom_pattern_based),
"valid_from": (5, partial_timestamp_based),
"tdelta": 1, # One day interval
},
"intrusion-set": {
"name": (20, partial_string_based),
"external_references": (60, partial_external_reference_based),
"aliases": (20, partial_list_based),
},
"location": {
"longitude_latitude": (34, partial_location_distance),
"region": (33, exact_match),
"country": (33, exact_match),
"threshold": 1000.0,
},
"malware": {
"malware_types": (20, partial_list_based),
"name": (80, partial_string_based),
},
"marking-definition": {
"name": (20, exact_match),
"definition": (60, exact_match),
"definition_type": (20, exact_match),
},
"threat-actor": {
"name": (60, partial_string_based),
"threat_actor_types": (20, partial_list_based),
"aliases": (20, partial_list_based),
},
"tool": {
"tool_types": (20, partial_list_based),
"name": (80, partial_string_based),
},
"vulnerability": {
"name": (30, partial_string_based),
"external_references": (70, partial_external_reference_based),
},
"_internal": {
"ignore_spec_version": False,
},
} # :autodoc-skip: