MatrixSynapse/synapse/handlers/presence.py

1377 lines
51 KiB
Python
Raw Normal View History

2014-08-12 16:10:52 +02:00
# -*- coding: utf-8 -*-
2016-01-07 05:26:29 +01:00
# Copyright 2014-2016 OpenMarket Ltd
# Copyright 2020 The Matrix.org Foundation C.I.C.
2014-08-12 16:10:52 +02:00
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2016-02-15 18:10:40 +01:00
"""This module is responsible for keeping track of presence status of local
and remote users.
2014-08-12 16:10:52 +02:00
2016-02-15 18:10:40 +01:00
The methods that define policy are:
- PresenceHandler._update_states
- PresenceHandler._handle_timeouts
- should_notify
"""
import abc
2018-07-09 08:09:20 +02:00
import logging
2016-02-15 18:10:40 +01:00
from contextlib import contextmanager
from typing import TYPE_CHECKING, Dict, Iterable, List, Set, Tuple
2016-02-15 18:10:40 +01:00
2018-07-09 08:09:20 +02:00
from prometheus_client import Counter
from typing_extensions import ContextManager
2018-07-09 08:09:20 +02:00
import synapse.metrics
from synapse.api.constants import EventTypes, Membership, PresenceState
2018-07-09 08:09:20 +02:00
from synapse.api.errors import SynapseError
from synapse.api.presence import UserPresenceState
from synapse.logging.context import run_in_background
from synapse.logging.utils import log_function
2018-07-09 08:09:20 +02:00
from synapse.metrics import LaterGauge
from synapse.metrics.background_process_metrics import run_as_background_process
from synapse.state import StateHandler
from synapse.storage.databases.main import DataStore
2020-08-24 20:25:27 +02:00
from synapse.types import Collection, JsonDict, UserID, get_domain_from_id
from synapse.util.async_helpers import Linearizer
from synapse.util.caches.descriptors import cached
2016-02-19 12:50:48 +01:00
from synapse.util.metrics import Measure
2016-02-15 18:10:40 +01:00
from synapse.util.wheel_timer import WheelTimer
2018-05-22 02:47:37 +02:00
if TYPE_CHECKING:
from synapse.server import HomeServer
2014-08-12 16:10:52 +02:00
logger = logging.getLogger(__name__)
2018-05-22 02:47:37 +02:00
notified_presence_counter = Counter("synapse_handler_presence_notified_presence", "")
2018-05-23 00:32:57 +02:00
federation_presence_out_counter = Counter(
2019-06-20 11:32:02 +02:00
"synapse_handler_presence_federation_presence_out", ""
)
2018-05-22 02:47:37 +02:00
presence_updates_counter = Counter("synapse_handler_presence_presence_updates", "")
timers_fired_counter = Counter("synapse_handler_presence_timers_fired", "")
2019-06-20 11:32:02 +02:00
federation_presence_counter = Counter(
"synapse_handler_presence_federation_presence", ""
)
2018-05-22 02:47:37 +02:00
bump_active_time_counter = Counter("synapse_handler_presence_bump_active_time", "")
2016-02-19 10:50:54 +01:00
2018-05-22 02:47:37 +02:00
get_updates_counter = Counter("synapse_handler_presence_get_updates", "", ["type"])
2018-05-23 00:32:57 +02:00
notify_reason_counter = Counter(
2019-06-20 11:32:02 +02:00
"synapse_handler_presence_notify_reason", "", ["reason"]
)
2018-05-23 00:32:57 +02:00
state_transition_counter = Counter(
"synapse_handler_presence_state_transition", "", ["from", "to"]
2016-09-06 12:31:01 +02:00
)
2016-09-05 15:12:11 +02:00
2014-08-12 16:10:52 +02:00
2016-02-15 18:10:40 +01:00
# If a user was last active in the last LAST_ACTIVE_GRANULARITY, consider them
# "currently_active"
2016-02-02 18:18:50 +01:00
LAST_ACTIVE_GRANULARITY = 60 * 1000
2016-02-15 18:10:40 +01:00
# How long to wait until a new /events or /sync request before assuming
# the client has gone.
SYNC_ONLINE_TIMEOUT = 30 * 1000
2014-08-12 16:10:52 +02:00
2016-02-15 18:10:40 +01:00
# How long to wait before marking the user as idle. Compared against last active
IDLE_TIMER = 5 * 60 * 1000
2014-08-12 16:10:52 +02:00
2016-02-15 18:10:40 +01:00
# How often we expect remote servers to resend us presence.
FEDERATION_TIMEOUT = 30 * 60 * 1000
2014-08-12 16:10:52 +02:00
2016-02-15 18:10:40 +01:00
# How often to resend presence to remote servers
FEDERATION_PING_INTERVAL = 25 * 60 * 1000
2014-08-12 16:10:52 +02:00
# How long we will wait before assuming that the syncs from an external process
# are dead.
EXTERNAL_PROCESS_EXPIRY = 5 * 60 * 1000
2016-02-15 18:10:40 +01:00
assert LAST_ACTIVE_GRANULARITY < IDLE_TIMER
2014-08-12 16:10:52 +02:00
class BasePresenceHandler(abc.ABC):
"""Parts of the PresenceHandler that are shared between workers and master"""
def __init__(self, hs: "HomeServer"):
self.clock = hs.get_clock()
self.store = hs.get_datastore()
self._busy_presence_enabled = hs.config.experimental.msc3026_enabled
active_presence = self.store.take_presence_startup_info()
self.user_to_current_state = {state.user_id: state for state in active_presence}
@abc.abstractmethod
async def user_syncing(
self, user_id: str, affect_presence: bool
) -> ContextManager[None]:
"""Returns a context manager that should surround any stream requests
from the user.
This allows us to keep track of who is currently streaming and who isn't
without having to have timers outside of this module to avoid flickering
when users disconnect/reconnect.
Args:
user_id: the user that is starting a sync
affect_presence: If false this function will be a no-op.
Useful for streams that are not associated with an actual
client that is being used by a user.
"""
@abc.abstractmethod
def get_currently_syncing_users_for_replication(self) -> Iterable[str]:
"""Get an iterable of syncing users on this worker, to send to the presence handler
This is called when a replication connection is established. It should return
a list of user ids, which are then sent as USER_SYNC commands to inform the
process handling presence about those users.
Returns:
An iterable of user_id strings.
"""
async def get_state(self, target_user: UserID) -> UserPresenceState:
results = await self.get_states([target_user.to_string()])
return results[0]
async def get_states(
self, target_user_ids: Iterable[str]
) -> List[UserPresenceState]:
"""Get the presence state for users."""
updates_d = await self.current_state_for_users(target_user_ids)
updates = list(updates_d.values())
for user_id in set(target_user_ids) - {u.user_id for u in updates}:
updates.append(UserPresenceState.default(user_id))
return updates
async def current_state_for_users(
self, user_ids: Iterable[str]
) -> Dict[str, UserPresenceState]:
"""Get the current presence state for multiple users.
Returns:
dict: `user_id` -> `UserPresenceState`
"""
states = {
user_id: self.user_to_current_state.get(user_id, None)
for user_id in user_ids
}
missing = [user_id for user_id, state in states.items() if not state]
if missing:
# There are things not in our in memory cache. Lets pull them out of
# the database.
res = await self.store.get_presence_for_users(missing)
states.update(res)
missing = [user_id for user_id, state in states.items() if not state]
if missing:
new = {
user_id: UserPresenceState.default(user_id) for user_id in missing
}
states.update(new)
self.user_to_current_state.update(new)
return states
@abc.abstractmethod
async def set_state(
self, target_user: UserID, state: JsonDict, ignore_status_msg: bool = False
) -> None:
"""Set the presence state of the user. """
@abc.abstractmethod
async def bump_presence_active_time(self, user: UserID):
"""We've seen the user do something that indicates they're interacting
with the app.
"""
class PresenceHandler(BasePresenceHandler):
def __init__(self, hs: "HomeServer"):
super().__init__(hs)
2018-08-13 08:47:46 +02:00
self.hs = hs
self.is_mine_id = hs.is_mine_id
self.server_name = hs.hostname
2016-02-15 18:10:40 +01:00
self.wheel_timer = WheelTimer()
self.notifier = hs.get_notifier()
2016-11-16 15:28:03 +01:00
self.federation = hs.get_federation_sender()
self.state = hs.get_state_handler()
self._presence_enabled = hs.config.use_presence
federation_registry = hs.get_federation_registry()
2019-06-20 11:32:02 +02:00
federation_registry.register_edu_handler("m.presence", self.incoming_presence)
2014-08-12 16:10:52 +02:00
2018-05-22 02:47:37 +02:00
LaterGauge(
2019-06-20 11:32:02 +02:00
"synapse_handlers_presence_user_to_current_state_size",
"",
[],
lambda: len(self.user_to_current_state),
2018-05-22 17:56:03 +02:00
)
2016-02-15 18:10:40 +01:00
now = self.clock.time_msec()
for state in self.user_to_current_state.values():
2016-02-15 18:10:40 +01:00
self.wheel_timer.insert(
2019-06-20 11:32:02 +02:00
now=now, obj=state.user_id, then=state.last_active_ts + IDLE_TIMER
2016-02-15 18:10:40 +01:00
)
self.wheel_timer.insert(
now=now,
obj=state.user_id,
2016-02-18 11:11:43 +01:00
then=state.last_user_sync_ts + SYNC_ONLINE_TIMEOUT,
2016-02-15 18:10:40 +01:00
)
if self.is_mine_id(state.user_id):
2016-02-15 18:10:40 +01:00
self.wheel_timer.insert(
now=now,
obj=state.user_id,
2016-02-18 11:11:43 +01:00
then=state.last_federation_update_ts + FEDERATION_PING_INTERVAL,
2016-02-15 18:10:40 +01:00
)
else:
self.wheel_timer.insert(
now=now,
obj=state.user_id,
2016-02-18 11:11:43 +01:00
then=state.last_federation_update_ts + FEDERATION_TIMEOUT,
2016-02-15 18:10:40 +01:00
)
# Set of users who have presence in the `user_to_current_state` that
# have not yet been persisted
self.unpersisted_users_changes = set() # type: Set[str]
2016-02-15 18:10:40 +01:00
hs.get_reactor().addSystemEventTrigger(
"before",
"shutdown",
run_as_background_process,
"presence.on_shutdown",
self._on_shutdown,
)
2016-02-15 18:10:40 +01:00
self._next_serial = 1
# Keeps track of the number of *ongoing* syncs on this process. While
# this is non zero a user will never go offline.
self.user_to_num_current_syncs = {} # type: Dict[str, int]
2016-02-15 18:10:40 +01:00
# Keeps track of the number of *ongoing* syncs on other processes.
# While any sync is ongoing on another process the user will never
# go offline.
# Each process has a unique identifier and an update frequency. If
# no update is received from that process within the update period then
# we assume that all the sync requests on that process have stopped.
# Stored as a dict from process_id to set of user_id, and a dict of
# process_id to millisecond timestamp last updated.
self.external_process_to_current_syncs = {} # type: Dict[int, Set[str]]
self.external_process_last_updated_ms = {} # type: Dict[int, int]
self.external_sync_linearizer = Linearizer(name="external_sync_linearizer")
if self._presence_enabled:
# Start a LoopingCall in 30s that fires every 5s.
# The initial delay is to allow disconnected clients a chance to
# reconnect before we treat them as offline.
def run_timeout_handler():
return run_as_background_process(
"handle_presence_timeouts", self._handle_timeouts
)
self.clock.call_later(
30, self.clock.looping_call, run_timeout_handler, 5000
)
def run_persister():
return run_as_background_process(
"persist_presence_changes", self._persist_unpersisted_changes
)
self.clock.call_later(60, self.clock.looping_call, run_persister, 60 * 1000)
2019-06-20 11:32:02 +02:00
LaterGauge(
"synapse_handlers_presence_wheel_timer_size",
"",
[],
lambda: len(self.wheel_timer),
)
2016-02-19 10:50:54 +01:00
# Used to handle sending of presence to newly joined users/servers
if self._presence_enabled:
self.notifier.add_replication_callback(self.notify_new_event)
# Presence is best effort and quickly heals itself, so lets just always
# stream from the current state when we restart.
self._event_pos = self.store.get_current_events_token()
self._event_processing = False
async def _on_shutdown(self):
2016-02-15 18:10:40 +01:00
"""Gets called when shutting down. This lets us persist any updates that
we haven't yet persisted, e.g. updates that only changes some internal
timers. This allows changes to persist across startup without having to
persist every single change.
If this does not run it simply means that some of the timers will fire
earlier than they should when synapse is restarted. This affect of this
is some spurious presence changes that will self-correct.
"""
2018-08-13 08:47:46 +02:00
# If the DB pool has already terminated, don't try updating
if not self.store.db_pool.is_running():
2018-08-13 08:47:46 +02:00
return
2016-02-15 18:10:40 +01:00
logger.info(
2016-09-13 14:26:33 +02:00
"Performing _on_shutdown. Persisting %d unpersisted changes",
2019-06-20 11:32:02 +02:00
len(self.user_to_current_state),
2016-02-15 18:10:40 +01:00
)
2014-08-12 16:10:52 +02:00
2016-02-15 18:10:40 +01:00
if self.unpersisted_users_changes:
await self.store.update_presence(
2019-06-20 11:32:02 +02:00
[
self.user_to_current_state[user_id]
for user_id in self.unpersisted_users_changes
]
)
2016-02-15 18:10:40 +01:00
logger.info("Finished _on_shutdown")
2014-08-12 16:10:52 +02:00
async def _persist_unpersisted_changes(self):
"""We periodically persist the unpersisted changes, as otherwise they
may stack up and slow down shutdown times.
"""
unpersisted = self.unpersisted_users_changes
self.unpersisted_users_changes = set()
2016-08-30 16:50:20 +02:00
if unpersisted:
2019-09-03 13:44:14 +02:00
logger.info("Persisting %d unpersisted presence updates", len(unpersisted))
await self.store.update_presence(
2019-06-20 11:32:02 +02:00
[self.user_to_current_state[user_id] for user_id in unpersisted]
)
async def _update_states(self, new_states: Iterable[UserPresenceState]) -> None:
2016-02-15 18:10:40 +01:00
"""Updates presence of users. Sets the appropriate timeouts. Pokes
the notifier and federation if and only if the changed presence state
should be sent to clients/servers.
Args:
new_states: The new user presence state updates to process.
2016-02-15 18:10:40 +01:00
"""
now = self.clock.time_msec()
2014-08-12 16:10:52 +02:00
2016-02-19 12:50:48 +01:00
with Measure(self.clock, "presence_update_states"):
2014-08-12 16:10:52 +02:00
# NOTE: We purposefully don't await between now and when we've
2016-02-19 12:50:48 +01:00
# calculated what we want to do with the new states, to avoid races.
2016-02-19 12:50:48 +01:00
to_notify = {} # Changes we want to notify everyone about
to_federation_ping = {} # These need sending keep-alives
2014-09-02 14:30:36 +02:00
2016-09-09 15:26:05 +02:00
# Only bother handling the last presence change for each user
new_states_dict = {}
for new_state in new_states:
new_states_dict[new_state.user_id] = new_state
new_states = new_states_dict.values()
2016-09-09 15:26:05 +02:00
2016-02-19 12:50:48 +01:00
for new_state in new_states:
user_id = new_state.user_id
2015-08-18 11:30:07 +02:00
2016-02-19 12:50:48 +01:00
# Its fine to not hit the database here, as the only thing not in
# the current state cache are OFFLINE states, where the only field
# of interest is last_active which is safe enough to assume is 0
# here.
prev_state = self.user_to_current_state.get(
user_id, UserPresenceState.default(user_id)
)
2014-08-12 16:10:52 +02:00
2016-02-19 12:50:48 +01:00
new_state, should_notify, should_ping = handle_update(
2019-06-20 11:32:02 +02:00
prev_state,
new_state,
is_mine=self.is_mine_id(user_id),
2016-02-19 12:50:48 +01:00
wheel_timer=self.wheel_timer,
2019-06-20 11:32:02 +02:00
now=now,
2016-02-19 12:50:48 +01:00
)
2016-02-15 18:10:40 +01:00
2016-02-19 12:50:48 +01:00
self.user_to_current_state[user_id] = new_state
2016-02-19 12:50:48 +01:00
if should_notify:
to_notify[user_id] = new_state
elif should_ping:
to_federation_ping[user_id] = new_state
2016-02-19 10:50:54 +01:00
2016-02-19 12:50:48 +01:00
# TODO: We should probably ensure there are no races hereafter
2016-02-15 18:10:40 +01:00
2018-05-22 02:47:37 +02:00
presence_updates_counter.inc(len(new_states))
2016-02-15 18:10:40 +01:00
2016-02-19 12:50:48 +01:00
if to_notify:
2018-05-22 02:47:37 +02:00
notified_presence_counter.inc(len(to_notify))
await self._persist_and_notify(list(to_notify.values()))
2016-02-19 12:50:48 +01:00
self.unpersisted_users_changes |= {s.user_id for s in new_states}
2016-02-19 12:50:48 +01:00
self.unpersisted_users_changes -= set(to_notify.keys())
2016-02-19 12:50:48 +01:00
to_federation_ping = {
2019-06-20 11:32:02 +02:00
user_id: state
for user_id, state in to_federation_ping.items()
2016-02-19 12:50:48 +01:00
if user_id not in to_notify
}
if to_federation_ping:
2018-05-22 02:47:37 +02:00
federation_presence_out_counter.inc(len(to_federation_ping))
self._push_to_remotes(to_federation_ping.values())
async def _handle_timeouts(self):
2016-02-15 18:10:40 +01:00
"""Checks the presence of users that have timed out and updates as
appropriate.
"""
logger.debug("Handling presence timeouts")
2016-02-15 18:10:40 +01:00
now = self.clock.time_msec()
# Fetch the list of users that *may* have timed out. Things may have
# changed since the timeout was set, so we won't necessarily have to
# take any action.
users_to_check = set(self.wheel_timer.fetch(now))
# Check whether the lists of syncing processes from an external
# process have expired.
expired_process_ids = [
2019-06-20 11:32:02 +02:00
process_id
for process_id, last_update in self.external_process_last_updated_ms.items()
if now - last_update > EXTERNAL_PROCESS_EXPIRY
]
for process_id in expired_process_ids:
# For each expired process drop tracking info and check the users
# that were syncing on that process to see if they need to be timed
# out.
users_to_check.update(
self.external_process_to_current_syncs.pop(process_id, ())
)
self.external_process_last_updated_ms.pop(process_id)
states = [
2019-06-20 11:32:02 +02:00
self.user_to_current_state.get(user_id, UserPresenceState.default(user_id))
for user_id in users_to_check
]
timers_fired_counter.inc(len(states))
syncing_user_ids = {
user_id
for user_id, count in self.user_to_num_current_syncs.items()
if count
}
for user_ids in self.external_process_to_current_syncs.values():
syncing_user_ids.update(user_ids)
changes = handle_timeouts(
states,
is_mine_fn=self.is_mine_id,
syncing_user_ids=syncing_user_ids,
now=now,
)
2015-08-18 11:30:07 +02:00
return await self._update_states(changes)
2016-02-15 18:10:40 +01:00
async def bump_presence_active_time(self, user):
2016-02-15 18:10:40 +01:00
"""We've seen the user do something that indicates they're interacting
with the app.
2015-08-18 11:30:07 +02:00
"""
# If presence is disabled, no-op
if not self.hs.config.use_presence:
return
2016-02-15 18:10:40 +01:00
user_id = user.to_string()
2016-02-19 12:32:04 +01:00
bump_active_time_counter.inc()
prev_state = await self.current_state_for_user(user_id)
2019-06-20 11:32:02 +02:00
new_fields = {"last_active_ts": self.clock.time_msec()}
if prev_state.state == PresenceState.UNAVAILABLE:
new_fields["state"] = PresenceState.ONLINE
await self._update_states([prev_state.copy_and_replace(**new_fields)])
async def user_syncing(
self, user_id: str, affect_presence: bool = True
) -> ContextManager[None]:
2016-02-15 18:10:40 +01:00
"""Returns a context manager that should surround any stream requests
from the user.
2016-02-15 18:10:40 +01:00
This allows us to keep track of who is currently streaming and who isn't
without having to have timers outside of this module to avoid flickering
when users disconnect/reconnect.
2016-02-15 18:10:40 +01:00
Args:
user_id (str)
affect_presence (bool): If false this function will be a no-op.
Useful for streams that are not associated with an actual
client that is being used by a user.
"""
# Override if it should affect the user's presence, if presence is
# disabled.
if not self.hs.config.use_presence:
affect_presence = False
2016-02-15 18:10:40 +01:00
if affect_presence:
curr_sync = self.user_to_num_current_syncs.get(user_id, 0)
self.user_to_num_current_syncs[user_id] = curr_sync + 1
prev_state = await self.current_state_for_user(user_id)
2016-02-15 18:10:40 +01:00
if prev_state.state == PresenceState.OFFLINE:
# If they're currently offline then bring them online, otherwise
# just update the last sync times.
await self._update_states(
2019-06-20 11:32:02 +02:00
[
prev_state.copy_and_replace(
state=PresenceState.ONLINE,
last_active_ts=self.clock.time_msec(),
last_user_sync_ts=self.clock.time_msec(),
)
]
)
2016-02-15 18:10:40 +01:00
else:
await self._update_states(
2019-06-20 11:32:02 +02:00
[
prev_state.copy_and_replace(
last_user_sync_ts=self.clock.time_msec()
)
]
)
async def _end():
try:
2016-02-15 18:10:40 +01:00
self.user_to_num_current_syncs[user_id] -= 1
prev_state = await self.current_state_for_user(user_id)
await self._update_states(
2019-06-20 11:32:02 +02:00
[
prev_state.copy_and_replace(
last_user_sync_ts=self.clock.time_msec()
)
]
)
except Exception:
logger.exception("Error updating presence after sync")
2016-02-15 18:10:40 +01:00
@contextmanager
def _user_syncing():
try:
yield
finally:
if affect_presence:
run_in_background(_end)
return _user_syncing()
def get_currently_syncing_users_for_replication(self) -> Iterable[str]:
# since we are the process handling presence, there is nothing to do here.
return []
async def update_external_syncs_row(
2019-06-20 11:32:02 +02:00
self, process_id, user_id, is_syncing, sync_time_msec
):
"""Update the syncing users for an external process as a delta.
Args:
process_id (str): An identifier for the process the users are
syncing against. This allows synapse to process updates
as user start and stop syncing against a given process.
user_id (str): The user who has started or stopped syncing
is_syncing (bool): Whether or not the user is now syncing
sync_time_msec(int): Time in ms when the user was last syncing
"""
with (await self.external_sync_linearizer.queue(process_id)):
prev_state = await self.current_state_for_user(user_id)
process_presence = self.external_process_to_current_syncs.setdefault(
process_id, set()
)
updates = []
if is_syncing and user_id not in process_presence:
if prev_state.state == PresenceState.OFFLINE:
2019-06-20 11:32:02 +02:00
updates.append(
prev_state.copy_and_replace(
state=PresenceState.ONLINE,
last_active_ts=sync_time_msec,
last_user_sync_ts=sync_time_msec,
)
)
else:
2019-06-20 11:32:02 +02:00
updates.append(
prev_state.copy_and_replace(last_user_sync_ts=sync_time_msec)
)
process_presence.add(user_id)
elif user_id in process_presence:
2019-06-20 11:32:02 +02:00
updates.append(
prev_state.copy_and_replace(last_user_sync_ts=sync_time_msec)
)
2017-03-31 12:36:32 +02:00
if not is_syncing:
process_presence.discard(user_id)
if updates:
await self._update_states(updates)
self.external_process_last_updated_ms[process_id] = self.clock.time_msec()
async def update_external_syncs_clear(self, process_id):
"""Marks all users that had been marked as syncing by a given process
as offline.
Used when the process has stopped/disappeared.
"""
with (await self.external_sync_linearizer.queue(process_id)):
process_presence = self.external_process_to_current_syncs.pop(
process_id, set()
)
prev_states = await self.current_state_for_users(process_presence)
time_now_ms = self.clock.time_msec()
await self._update_states(
2019-06-20 11:32:02 +02:00
[
prev_state.copy_and_replace(last_user_sync_ts=time_now_ms)
for prev_state in prev_states.values()
2019-06-20 11:32:02 +02:00
]
)
self.external_process_last_updated_ms.pop(process_id, None)
async def current_state_for_user(self, user_id):
"""Get the current presence state for a user."""
res = await self.current_state_for_users([user_id])
return res[user_id]
async def _persist_and_notify(self, states):
2016-02-15 18:10:40 +01:00
"""Persist states in the database, poke the notifier and send to
interested remote servers
"""
stream_id, max_token = await self.store.update_presence(states)
2014-08-12 16:10:52 +02:00
parties = await get_interested_parties(self.store, states)
room_ids_to_states, users_to_states = parties
2016-02-15 18:10:40 +01:00
self.notifier.on_new_event(
2019-06-20 11:32:02 +02:00
"presence_key",
stream_id,
rooms=room_ids_to_states.keys(),
users=[UserID.from_string(u) for u in users_to_states],
)
2014-08-12 16:10:52 +02:00
self._push_to_remotes(states)
2016-02-15 18:10:40 +01:00
def _push_to_remotes(self, states):
2016-02-15 18:10:40 +01:00
"""Sends state updates to remote servers.
Args:
2017-04-12 11:11:43 +02:00
states (list(UserPresenceState))
2016-02-15 18:10:40 +01:00
"""
self.federation.send_presence(states)
2016-02-15 18:10:40 +01:00
async def incoming_presence(self, origin, content):
"""Called when we receive a `m.presence` EDU from a remote server."""
if not self._presence_enabled:
return
2016-02-15 18:10:40 +01:00
now = self.clock.time_msec()
updates = []
for push in content.get("push", []):
# A "push" contains a list of presence that we are probably interested
# in.
user_id = push.get("user_id", None)
if not user_id:
logger.info(
2019-06-20 11:32:02 +02:00
"Got presence update from %r with no 'user_id': %r", origin, push
2016-02-15 18:10:40 +01:00
)
continue
if get_domain_from_id(user_id) != origin:
logger.info(
"Got presence update from %r with bad 'user_id': %r",
2019-06-20 11:32:02 +02:00
origin,
user_id,
)
continue
2016-02-15 18:10:40 +01:00
presence_state = push.get("presence", None)
if not presence_state:
logger.info(
"Got presence update from %r with no 'presence_state': %r",
2019-06-20 11:32:02 +02:00
origin,
push,
2016-02-15 18:10:40 +01:00
)
continue
2014-08-12 16:10:52 +02:00
2019-06-20 11:32:02 +02:00
new_fields = {"state": presence_state, "last_federation_update_ts": now}
2014-08-12 16:10:52 +02:00
2016-02-15 18:10:40 +01:00
last_active_ago = push.get("last_active_ago", None)
if last_active_ago is not None:
2016-02-18 11:11:43 +01:00
new_fields["last_active_ts"] = now - last_active_ago
2014-08-12 16:10:52 +02:00
2016-02-15 18:10:40 +01:00
new_fields["status_msg"] = push.get("status_msg", None)
new_fields["currently_active"] = push.get("currently_active", False)
prev_state = await self.current_state_for_user(user_id)
2016-02-15 18:10:40 +01:00
updates.append(prev_state.copy_and_replace(**new_fields))
2016-02-15 18:10:40 +01:00
if updates:
2018-05-22 02:47:37 +02:00
federation_presence_counter.inc(len(updates))
await self._update_states(updates)
async def set_state(self, target_user, state, ignore_status_msg=False):
"""Set the presence state of the user."""
2016-02-15 18:10:40 +01:00
status_msg = state.get("status_msg", None)
presence = state["presence"]
2014-08-12 16:10:52 +02:00
2016-02-18 10:16:32 +01:00
valid_presence = (
2019-06-20 11:32:02 +02:00
PresenceState.ONLINE,
PresenceState.UNAVAILABLE,
PresenceState.OFFLINE,
2021-03-19 16:11:08 +01:00
PresenceState.BUSY,
2016-02-18 10:16:32 +01:00
)
2021-03-19 16:11:08 +01:00
if presence not in valid_presence or (
presence == PresenceState.BUSY and not self._busy_presence_enabled
):
2016-02-18 10:16:32 +01:00
raise SynapseError(400, "Invalid presence state")
2016-02-15 18:10:40 +01:00
user_id = target_user.to_string()
2014-08-12 16:10:52 +02:00
prev_state = await self.current_state_for_user(user_id)
2016-02-15 18:10:40 +01:00
2019-06-20 11:32:02 +02:00
new_fields = {"state": presence}
2016-02-15 18:10:40 +01:00
2016-08-10 13:57:30 +02:00
if not ignore_status_msg:
msg = status_msg if presence != PresenceState.OFFLINE else None
new_fields["status_msg"] = msg
2021-03-19 16:11:08 +01:00
if presence == PresenceState.ONLINE or (
2021-03-19 18:19:50 +01:00
presence == PresenceState.BUSY and self._busy_presence_enabled
):
2016-02-18 11:11:43 +01:00
new_fields["last_active_ts"] = self.clock.time_msec()
2016-02-15 18:10:40 +01:00
await self._update_states([prev_state.copy_and_replace(**new_fields)])
2014-08-12 16:10:52 +02:00
async def is_visible(self, observed_user, observer_user):
"""Returns whether a user can see another user's presence."""
observer_room_ids = await self.store.get_rooms_for_user(
2017-03-16 12:51:46 +01:00
observer_user.to_string()
)
observed_room_ids = await self.store.get_rooms_for_user(
2017-03-16 12:51:46 +01:00
observed_user.to_string()
)
2016-02-15 18:10:40 +01:00
if observer_room_ids & observed_room_ids:
return True
return False
async def get_all_presence_updates(
self, instance_name: str, last_id: int, current_id: int, limit: int
) -> Tuple[List[Tuple[int, list]], int, bool]:
"""
Gets a list of presence update rows from between the given stream ids.
Each row has:
- stream_id(str)
- user_id(str)
- state(str)
- last_active_ts(int)
- last_federation_update_ts(int)
- last_user_sync_ts(int)
- status_msg(int)
- currently_active(int)
Args:
instance_name: The writer we want to fetch updates from. Unused
here since there is only ever one writer.
last_id: The token to fetch updates from. Exclusive.
current_id: The token to fetch updates up to. Inclusive.
limit: The requested limit for the number of rows to return. The
function may return more or fewer rows.
Returns:
A tuple consisting of: the updates, a token to use to fetch
subsequent updates, and whether we returned fewer rows than exists
between the requested tokens due to the limit.
The token returned can be used in a subsequent call to this
2020-10-23 18:38:40 +02:00
function to get further updates.
The updates are a list of 2-tuples of stream ID and the row data
"""
# TODO(markjh): replicate the unpersisted changes.
# This could use the in-memory stores for recent changes.
rows = await self.store.get_all_presence_updates(
instance_name, last_id, current_id, limit
)
return rows
def notify_new_event(self):
"""Called when new events have happened. Handles users and servers
joining rooms and require being sent presence.
"""
2019-03-28 14:48:41 +01:00
if self._event_processing:
return
async def _process_presence():
2019-03-28 14:55:21 +01:00
assert not self._event_processing
self._event_processing = True
try:
await self._unsafe_process()
finally:
self._event_processing = False
run_as_background_process("presence.notify_new_event", _process_presence)
async def _unsafe_process(self):
# Loop round handling deltas until we're up to date
while True:
with Measure(self.clock, "presence_delta"):
room_max_stream_ordering = self.store.get_room_max_stream_ordering()
if self._event_pos == room_max_stream_ordering:
return
logger.debug(
"Processing presence stats %s->%s",
self._event_pos,
room_max_stream_ordering,
)
max_pos, deltas = await self.store.get_current_state_deltas(
self._event_pos, room_max_stream_ordering
)
await self._handle_state_delta(deltas)
self._event_pos = max_pos
# Expose current event processing position to prometheus
synapse.metrics.event_processing_positions.labels("presence").set(
max_pos
)
async def _handle_state_delta(self, deltas):
"""Process current state deltas to find new joins that need to be
handled.
"""
Be smarter about which hosts to send presence to when processing room joins (#9402) This PR attempts to eliminate unnecessary presence sending work when your local server joins a room, or when a remote server joins a room your server is participating in by processing state deltas in chunks rather than individually. --- When your server joins a room for the first time, it requests the historical state as well. This chunk of new state is passed to the presence handler which, after filtering that state down to only membership joins, will send presence updates to homeservers for each join processed. It turns out that we were being a bit naive and processing each event individually, and sending out presence updates for every one of those joins. Even if many different joins were users on the same server (hello IRC bridges), we'd send presence to that same homeserver for every remote user join we saw. This PR attempts to deduplicate all of that by processing the entire batch of state deltas at once, instead of only doing each join individually. We process the joins and note down which servers need which presence: * If it was a local user join, send that user's latest presence to all servers in the room * If it was a remote user join, send the presence for all local users in the room to that homeserver We deduplicate by inserting all of those pending updates into a dictionary of the form: ``` { server_name1: {presence_update1, ...}, server_name2: {presence_update1, presence_update2, ...} } ``` Only after building this dict do we then start sending out presence updates.
2021-02-19 12:37:29 +01:00
# A map of destination to a set of user state that they should receive
presence_destinations = {} # type: Dict[str, Set[UserPresenceState]]
for delta in deltas:
typ = delta["type"]
state_key = delta["state_key"]
room_id = delta["room_id"]
event_id = delta["event_id"]
prev_event_id = delta["prev_event_id"]
logger.debug("Handling: %r %r, %s", typ, state_key, event_id)
Be smarter about which hosts to send presence to when processing room joins (#9402) This PR attempts to eliminate unnecessary presence sending work when your local server joins a room, or when a remote server joins a room your server is participating in by processing state deltas in chunks rather than individually. --- When your server joins a room for the first time, it requests the historical state as well. This chunk of new state is passed to the presence handler which, after filtering that state down to only membership joins, will send presence updates to homeservers for each join processed. It turns out that we were being a bit naive and processing each event individually, and sending out presence updates for every one of those joins. Even if many different joins were users on the same server (hello IRC bridges), we'd send presence to that same homeserver for every remote user join we saw. This PR attempts to deduplicate all of that by processing the entire batch of state deltas at once, instead of only doing each join individually. We process the joins and note down which servers need which presence: * If it was a local user join, send that user's latest presence to all servers in the room * If it was a remote user join, send the presence for all local users in the room to that homeserver We deduplicate by inserting all of those pending updates into a dictionary of the form: ``` { server_name1: {presence_update1, ...}, server_name2: {presence_update1, presence_update2, ...} } ``` Only after building this dict do we then start sending out presence updates.
2021-02-19 12:37:29 +01:00
# Drop any event that isn't a membership join
if typ != EventTypes.Member:
continue
if event_id is None:
# state has been deleted, so this is not a join. We only care about
# joins.
continue
event = await self.store.get_event(event_id, allow_none=True)
if not event or event.content.get("membership") != Membership.JOIN:
# We only care about joins
continue
if prev_event_id:
prev_event = await self.store.get_event(prev_event_id, allow_none=True)
if (
prev_event
and prev_event.content.get("membership") == Membership.JOIN
):
# Ignore changes to join events.
continue
Be smarter about which hosts to send presence to when processing room joins (#9402) This PR attempts to eliminate unnecessary presence sending work when your local server joins a room, or when a remote server joins a room your server is participating in by processing state deltas in chunks rather than individually. --- When your server joins a room for the first time, it requests the historical state as well. This chunk of new state is passed to the presence handler which, after filtering that state down to only membership joins, will send presence updates to homeservers for each join processed. It turns out that we were being a bit naive and processing each event individually, and sending out presence updates for every one of those joins. Even if many different joins were users on the same server (hello IRC bridges), we'd send presence to that same homeserver for every remote user join we saw. This PR attempts to deduplicate all of that by processing the entire batch of state deltas at once, instead of only doing each join individually. We process the joins and note down which servers need which presence: * If it was a local user join, send that user's latest presence to all servers in the room * If it was a remote user join, send the presence for all local users in the room to that homeserver We deduplicate by inserting all of those pending updates into a dictionary of the form: ``` { server_name1: {presence_update1, ...}, server_name2: {presence_update1, presence_update2, ...} } ``` Only after building this dict do we then start sending out presence updates.
2021-02-19 12:37:29 +01:00
# Retrieve any user presence state updates that need to be sent as a result,
# and the destinations that need to receive it
destinations, user_presence_states = await self._on_user_joined_room(
room_id, state_key
)
# Insert the destinations and respective updates into our destinations dict
for destination in destinations:
presence_destinations.setdefault(destination, set()).update(
user_presence_states
)
# Send out user presence updates for each destination
for destination, user_state_set in presence_destinations.items():
self.federation.send_presence_to_destinations(
destinations=[destination], states=user_state_set
)
Be smarter about which hosts to send presence to when processing room joins (#9402) This PR attempts to eliminate unnecessary presence sending work when your local server joins a room, or when a remote server joins a room your server is participating in by processing state deltas in chunks rather than individually. --- When your server joins a room for the first time, it requests the historical state as well. This chunk of new state is passed to the presence handler which, after filtering that state down to only membership joins, will send presence updates to homeservers for each join processed. It turns out that we were being a bit naive and processing each event individually, and sending out presence updates for every one of those joins. Even if many different joins were users on the same server (hello IRC bridges), we'd send presence to that same homeserver for every remote user join we saw. This PR attempts to deduplicate all of that by processing the entire batch of state deltas at once, instead of only doing each join individually. We process the joins and note down which servers need which presence: * If it was a local user join, send that user's latest presence to all servers in the room * If it was a remote user join, send the presence for all local users in the room to that homeserver We deduplicate by inserting all of those pending updates into a dictionary of the form: ``` { server_name1: {presence_update1, ...}, server_name2: {presence_update1, presence_update2, ...} } ``` Only after building this dict do we then start sending out presence updates.
2021-02-19 12:37:29 +01:00
async def _on_user_joined_room(
self, room_id: str, user_id: str
) -> Tuple[List[str], List[UserPresenceState]]:
2019-03-28 14:48:41 +01:00
"""Called when we detect a user joining the room via the current state
Be smarter about which hosts to send presence to when processing room joins (#9402) This PR attempts to eliminate unnecessary presence sending work when your local server joins a room, or when a remote server joins a room your server is participating in by processing state deltas in chunks rather than individually. --- When your server joins a room for the first time, it requests the historical state as well. This chunk of new state is passed to the presence handler which, after filtering that state down to only membership joins, will send presence updates to homeservers for each join processed. It turns out that we were being a bit naive and processing each event individually, and sending out presence updates for every one of those joins. Even if many different joins were users on the same server (hello IRC bridges), we'd send presence to that same homeserver for every remote user join we saw. This PR attempts to deduplicate all of that by processing the entire batch of state deltas at once, instead of only doing each join individually. We process the joins and note down which servers need which presence: * If it was a local user join, send that user's latest presence to all servers in the room * If it was a remote user join, send the presence for all local users in the room to that homeserver We deduplicate by inserting all of those pending updates into a dictionary of the form: ``` { server_name1: {presence_update1, ...}, server_name2: {presence_update1, presence_update2, ...} } ``` Only after building this dict do we then start sending out presence updates.
2021-02-19 12:37:29 +01:00
delta stream. Returns the destinations that need to be updated and the
presence updates to send to them.
Args:
room_id: The ID of the room that the user has joined.
user_id: The ID of the user that has joined the room.
Be smarter about which hosts to send presence to when processing room joins (#9402) This PR attempts to eliminate unnecessary presence sending work when your local server joins a room, or when a remote server joins a room your server is participating in by processing state deltas in chunks rather than individually. --- When your server joins a room for the first time, it requests the historical state as well. This chunk of new state is passed to the presence handler which, after filtering that state down to only membership joins, will send presence updates to homeservers for each join processed. It turns out that we were being a bit naive and processing each event individually, and sending out presence updates for every one of those joins. Even if many different joins were users on the same server (hello IRC bridges), we'd send presence to that same homeserver for every remote user join we saw. This PR attempts to deduplicate all of that by processing the entire batch of state deltas at once, instead of only doing each join individually. We process the joins and note down which servers need which presence: * If it was a local user join, send that user's latest presence to all servers in the room * If it was a remote user join, send the presence for all local users in the room to that homeserver We deduplicate by inserting all of those pending updates into a dictionary of the form: ``` { server_name1: {presence_update1, ...}, server_name2: {presence_update1, presence_update2, ...} } ``` Only after building this dict do we then start sending out presence updates.
2021-02-19 12:37:29 +01:00
Returns:
A tuple of destinations and presence updates to send to them.
"""
2019-03-28 14:48:41 +01:00
if self.is_mine_id(user_id):
# If this is a local user then we need to send their presence
# out to hosts in the room (who don't already have it)
2019-03-28 14:48:41 +01:00
# TODO: We should be able to filter the hosts down to those that
# haven't previously seen the user
Be smarter about which hosts to send presence to when processing room joins (#9402) This PR attempts to eliminate unnecessary presence sending work when your local server joins a room, or when a remote server joins a room your server is participating in by processing state deltas in chunks rather than individually. --- When your server joins a room for the first time, it requests the historical state as well. This chunk of new state is passed to the presence handler which, after filtering that state down to only membership joins, will send presence updates to homeservers for each join processed. It turns out that we were being a bit naive and processing each event individually, and sending out presence updates for every one of those joins. Even if many different joins were users on the same server (hello IRC bridges), we'd send presence to that same homeserver for every remote user join we saw. This PR attempts to deduplicate all of that by processing the entire batch of state deltas at once, instead of only doing each join individually. We process the joins and note down which servers need which presence: * If it was a local user join, send that user's latest presence to all servers in the room * If it was a remote user join, send the presence for all local users in the room to that homeserver We deduplicate by inserting all of those pending updates into a dictionary of the form: ``` { server_name1: {presence_update1, ...}, server_name2: {presence_update1, presence_update2, ...} } ``` Only after building this dict do we then start sending out presence updates.
2021-02-19 12:37:29 +01:00
remote_hosts = await self.state.get_current_hosts_in_room(room_id)
2019-03-28 14:48:41 +01:00
# Filter out ourselves.
Be smarter about which hosts to send presence to when processing room joins (#9402) This PR attempts to eliminate unnecessary presence sending work when your local server joins a room, or when a remote server joins a room your server is participating in by processing state deltas in chunks rather than individually. --- When your server joins a room for the first time, it requests the historical state as well. This chunk of new state is passed to the presence handler which, after filtering that state down to only membership joins, will send presence updates to homeservers for each join processed. It turns out that we were being a bit naive and processing each event individually, and sending out presence updates for every one of those joins. Even if many different joins were users on the same server (hello IRC bridges), we'd send presence to that same homeserver for every remote user join we saw. This PR attempts to deduplicate all of that by processing the entire batch of state deltas at once, instead of only doing each join individually. We process the joins and note down which servers need which presence: * If it was a local user join, send that user's latest presence to all servers in the room * If it was a remote user join, send the presence for all local users in the room to that homeserver We deduplicate by inserting all of those pending updates into a dictionary of the form: ``` { server_name1: {presence_update1, ...}, server_name2: {presence_update1, presence_update2, ...} } ``` Only after building this dict do we then start sending out presence updates.
2021-02-19 12:37:29 +01:00
filtered_remote_hosts = [
host for host in remote_hosts if host != self.server_name
]
Be smarter about which hosts to send presence to when processing room joins (#9402) This PR attempts to eliminate unnecessary presence sending work when your local server joins a room, or when a remote server joins a room your server is participating in by processing state deltas in chunks rather than individually. --- When your server joins a room for the first time, it requests the historical state as well. This chunk of new state is passed to the presence handler which, after filtering that state down to only membership joins, will send presence updates to homeservers for each join processed. It turns out that we were being a bit naive and processing each event individually, and sending out presence updates for every one of those joins. Even if many different joins were users on the same server (hello IRC bridges), we'd send presence to that same homeserver for every remote user join we saw. This PR attempts to deduplicate all of that by processing the entire batch of state deltas at once, instead of only doing each join individually. We process the joins and note down which servers need which presence: * If it was a local user join, send that user's latest presence to all servers in the room * If it was a remote user join, send the presence for all local users in the room to that homeserver We deduplicate by inserting all of those pending updates into a dictionary of the form: ``` { server_name1: {presence_update1, ...}, server_name2: {presence_update1, presence_update2, ...} } ``` Only after building this dict do we then start sending out presence updates.
2021-02-19 12:37:29 +01:00
state = await self.current_state_for_user(user_id)
return filtered_remote_hosts, [state]
2019-03-28 14:48:41 +01:00
else:
# A remote user has joined the room, so we need to:
# 1. Check if this is a new server in the room
# 2. If so send any presence they don't already have for
# local users in the room.
# TODO: We should be able to filter the users down to those that
# the server hasn't previously seen
# TODO: Check that this is actually a new server joining the
# room.
Be smarter about which hosts to send presence to when processing room joins (#9402) This PR attempts to eliminate unnecessary presence sending work when your local server joins a room, or when a remote server joins a room your server is participating in by processing state deltas in chunks rather than individually. --- When your server joins a room for the first time, it requests the historical state as well. This chunk of new state is passed to the presence handler which, after filtering that state down to only membership joins, will send presence updates to homeservers for each join processed. It turns out that we were being a bit naive and processing each event individually, and sending out presence updates for every one of those joins. Even if many different joins were users on the same server (hello IRC bridges), we'd send presence to that same homeserver for every remote user join we saw. This PR attempts to deduplicate all of that by processing the entire batch of state deltas at once, instead of only doing each join individually. We process the joins and note down which servers need which presence: * If it was a local user join, send that user's latest presence to all servers in the room * If it was a remote user join, send the presence for all local users in the room to that homeserver We deduplicate by inserting all of those pending updates into a dictionary of the form: ``` { server_name1: {presence_update1, ...}, server_name2: {presence_update1, presence_update2, ...} } ``` Only after building this dict do we then start sending out presence updates.
2021-02-19 12:37:29 +01:00
remote_host = get_domain_from_id(user_id)
users = await self.state.get_current_users_in_room(room_id)
user_ids = list(filter(self.is_mine_id, users))
2019-03-28 14:48:41 +01:00
states_d = await self.current_state_for_users(user_ids)
2019-03-28 14:48:41 +01:00
# Filter out old presence, i.e. offline presence states where
# the user hasn't been active for a week. We can change this
# depending on what we want the UX to be, but at the least we
# should filter out offline presence where the state is just the
# default state.
now = self.clock.time_msec()
states = [
2019-06-20 11:32:02 +02:00
state
for state in states_d.values()
2019-03-28 14:48:41 +01:00
if state.state != PresenceState.OFFLINE
or now - state.last_active_ts < 7 * 24 * 60 * 60 * 1000
or state.status_msg is not None
]
Be smarter about which hosts to send presence to when processing room joins (#9402) This PR attempts to eliminate unnecessary presence sending work when your local server joins a room, or when a remote server joins a room your server is participating in by processing state deltas in chunks rather than individually. --- When your server joins a room for the first time, it requests the historical state as well. This chunk of new state is passed to the presence handler which, after filtering that state down to only membership joins, will send presence updates to homeservers for each join processed. It turns out that we were being a bit naive and processing each event individually, and sending out presence updates for every one of those joins. Even if many different joins were users on the same server (hello IRC bridges), we'd send presence to that same homeserver for every remote user join we saw. This PR attempts to deduplicate all of that by processing the entire batch of state deltas at once, instead of only doing each join individually. We process the joins and note down which servers need which presence: * If it was a local user join, send that user's latest presence to all servers in the room * If it was a remote user join, send the presence for all local users in the room to that homeserver We deduplicate by inserting all of those pending updates into a dictionary of the form: ``` { server_name1: {presence_update1, ...}, server_name2: {presence_update1, presence_update2, ...} } ``` Only after building this dict do we then start sending out presence updates.
2021-02-19 12:37:29 +01:00
return [remote_host], states
2016-02-15 18:10:40 +01:00
def should_notify(old_state, new_state):
"""Decides if a presence state change should be sent to interested parties."""
2016-09-06 11:28:35 +02:00
if old_state == new_state:
return False
2016-02-15 18:10:40 +01:00
if old_state.status_msg != new_state.status_msg:
2018-05-22 02:47:37 +02:00
notify_reason_counter.labels("status_msg_change").inc()
2016-02-15 18:10:40 +01:00
return True
if old_state.state != new_state.state:
2018-05-22 02:47:37 +02:00
notify_reason_counter.labels("state_change").inc()
state_transition_counter.labels(old_state.state, new_state.state).inc()
return True
if old_state.state == PresenceState.ONLINE:
2016-02-15 18:10:40 +01:00
if new_state.currently_active != old_state.currently_active:
2018-05-22 02:47:37 +02:00
notify_reason_counter.labels("current_active_change").inc()
2016-02-15 18:10:40 +01:00
return True
2019-06-20 11:32:02 +02:00
if (
new_state.last_active_ts - old_state.last_active_ts
> LAST_ACTIVE_GRANULARITY
):
2020-10-23 18:38:40 +02:00
# Only notify about last active bumps if we're not currently active
if not new_state.currently_active:
2018-05-22 02:47:37 +02:00
notify_reason_counter.labels("last_active_change_online").inc()
return True
elif new_state.last_active_ts - old_state.last_active_ts > LAST_ACTIVE_GRANULARITY:
2016-02-15 18:10:40 +01:00
# Always notify for a transition where last active gets bumped.
2018-05-22 02:47:37 +02:00
notify_reason_counter.labels("last_active_change_not_online").inc()
2016-02-15 18:10:40 +01:00
return True
2016-02-15 18:10:40 +01:00
return False
2015-05-14 16:29:58 +02:00
def format_user_presence_state(state, now, include_user_id=True):
2016-02-15 18:10:40 +01:00
"""Convert UserPresenceState to a format that can be sent down to clients
and to other servers.
2017-03-15 15:50:33 +01:00
The "user_id" is optional so that this function can be used to format presence
updates for client /sync responses and for federation /send requests.
2016-02-15 18:10:40 +01:00
"""
2019-06-20 11:32:02 +02:00
content = {"presence": state.state}
if include_user_id:
content["user_id"] = state.user_id
2016-02-18 11:11:43 +01:00
if state.last_active_ts:
content["last_active_ago"] = now - state.last_active_ts
2016-02-15 18:10:40 +01:00
if state.status_msg and state.state != PresenceState.OFFLINE:
content["status_msg"] = state.status_msg
if state.state == PresenceState.ONLINE:
content["currently_active"] = state.currently_active
2015-05-14 16:29:58 +02:00
2016-02-15 18:10:40 +01:00
return content
2015-05-14 16:29:58 +02:00
2014-08-12 16:10:52 +02:00
2020-09-04 12:54:56 +02:00
class PresenceEventSource:
def __init__(self, hs: "HomeServer"):
# We can't call get_presence_handler here because there's a cycle:
#
# Presence -> Notifier -> PresenceEventSource -> Presence
#
self.get_presence_handler = hs.get_presence_handler
self.clock = hs.get_clock()
2016-02-15 18:10:40 +01:00
self.store = hs.get_datastore()
self.state = hs.get_state_handler()
@log_function
async def get_new_events(
2019-06-20 11:32:02 +02:00
self,
user,
from_key,
room_ids=None,
include_offline=True,
explicit_room_id=None,
**kwargs
):
2016-02-15 18:10:40 +01:00
# The process for getting presence events are:
# 1. Get the rooms the user is in.
# 2. Get the list of user in the rooms.
# 3. Get the list of users that are in the user's presence list.
# 4. If there is a from_key set, cross reference the list of users
# with the `presence_stream_cache` to see which ones we actually
# need to check.
# 5. Load current state for the users.
#
# We don't try and limit the presence updates by the current token, as
# sending down the rare duplicate is not a concern.
with Measure(self.clock, "presence.get_new_events"):
if from_key is not None:
from_key = int(from_key)
max_token = self.store.get_current_presence_token()
if from_key == max_token:
# This is necessary as due to the way stream ID generators work
# we may get updates that have a stream ID greater than the max
2019-07-01 11:22:42 +02:00
# token (e.g. max_token is N but stream generator may return
# results for N+2, due to N+1 not having finished being
# persisted yet).
#
# This is usually fine, as it just means that we may send down
# some presence updates multiple times. However, we need to be
# careful that the sync stream either actually does make some
# progress or doesn't return, otherwise clients will end up
# tight looping calling /sync due to it immediately returning
# the same token repeatedly.
#
# Hence this guard where we just return nothing so that the sync
# doesn't return. C.f. #5503.
return [], max_token
presence = self.get_presence_handler()
stream_change_cache = self.store.presence_stream_cache
users_interested_in = await self._get_interested_in(user, explicit_room_id)
user_ids_changed = set() # type: Collection[str]
changed = None
if from_key:
changed = stream_change_cache.get_all_entities_changed(from_key)
2016-06-03 14:49:16 +02:00
if changed is not None and len(changed) < 500:
assert isinstance(user_ids_changed, set)
# For small deltas, its quicker to get all changes and then
# work out if we share a room or they're in our presence list
2018-05-22 02:47:37 +02:00
get_updates_counter.labels("stream").inc()
for other_user_id in changed:
if other_user_id in users_interested_in:
user_ids_changed.add(other_user_id)
else:
2016-02-23 15:57:45 +01:00
# Too many possible updates. Find all users we can see and check
# if any of them have changed.
2018-05-22 02:47:37 +02:00
get_updates_counter.labels("full").inc()
if from_key:
user_ids_changed = stream_change_cache.get_entities_changed(
2019-06-20 11:32:02 +02:00
users_interested_in, from_key
)
else:
user_ids_changed = users_interested_in
updates = await presence.current_state_for_users(user_ids_changed)
2014-08-12 16:10:52 +02:00
if include_offline:
return (list(updates.values()), max_token)
else:
return (
[s for s in updates.values() if s.state != PresenceState.OFFLINE],
max_token,
2019-06-20 11:32:02 +02:00
)
2014-08-12 16:10:52 +02:00
2016-02-15 18:10:40 +01:00
def get_current_key(self):
return self.store.get_current_presence_token()
@cached(num_args=2, cache_context=True)
async def _get_interested_in(self, user, explicit_room_id, cache_context):
"""Returns the set of users that the given user should see presence
updates for
"""
user_id = user.to_string()
users_interested_in = set()
users_interested_in.add(user_id) # So that we receive our own presence
users_who_share_room = await self.store.get_users_who_share_room_with_user(
2019-06-20 11:32:02 +02:00
user_id, on_invalidate=cache_context.invalidate
)
users_interested_in.update(users_who_share_room)
if explicit_room_id:
user_ids = await self.store.get_users_in_room(
2019-06-20 11:32:02 +02:00
explicit_room_id, on_invalidate=cache_context.invalidate
)
users_interested_in.update(user_ids)
return users_interested_in
2016-02-18 12:52:33 +01:00
def handle_timeouts(user_states, is_mine_fn, syncing_user_ids, now):
2016-02-18 12:52:33 +01:00
"""Checks the presence of users that have timed out and updates as
appropriate.
Args:
user_states(list): List of UserPresenceState's to check.
is_mine_fn (fn): Function that returns if a user_id is ours
syncing_user_ids (set): Set of user_ids with active syncs.
2016-02-18 12:52:33 +01:00
now (int): Current time in ms.
Returns:
List of UserPresenceState updates
"""
changes = {} # Actual changes we need to notify people about
for state in user_states:
is_mine = is_mine_fn(state.user_id)
new_state = handle_timeout(state, is_mine, syncing_user_ids, now)
2016-02-18 12:52:33 +01:00
if new_state:
changes[state.user_id] = new_state
return list(changes.values())
2016-02-18 12:52:33 +01:00
def handle_timeout(state, is_mine, syncing_user_ids, now):
2016-02-18 12:52:33 +01:00
"""Checks the presence of the user to see if any of the timers have elapsed
Args:
state (UserPresenceState)
is_mine (bool): Whether the user is ours
syncing_user_ids (set): Set of user_ids with active syncs.
2016-02-18 12:52:33 +01:00
now (int): Current time in ms.
Returns:
A UserPresenceState update or None if no update.
"""
if state.state == PresenceState.OFFLINE:
# No timeouts are associated with offline states.
return None
changed = False
user_id = state.user_id
if is_mine:
if state.state == PresenceState.ONLINE:
if now - state.last_active_ts > IDLE_TIMER:
# Currently online, but last activity ages ago so auto
# idle
2019-06-20 11:32:02 +02:00
state = state.copy_and_replace(state=PresenceState.UNAVAILABLE)
2016-02-18 12:52:33 +01:00
changed = True
elif now - state.last_active_ts > LAST_ACTIVE_GRANULARITY:
# So that we send down a notification that we've
# stopped updating.
changed = True
if now - state.last_federation_update_ts > FEDERATION_PING_INTERVAL:
# Need to send ping to other servers to ensure they don't
# timeout and set us to offline
changed = True
# If there are have been no sync for a while (and none ongoing),
# set presence to offline
if user_id not in syncing_user_ids:
# If the user has done something recently but hasn't synced,
# don't set them as offline.
sync_or_active = max(state.last_user_sync_ts, state.last_active_ts)
if now - sync_or_active > SYNC_ONLINE_TIMEOUT:
2016-02-18 12:52:33 +01:00
state = state.copy_and_replace(
2019-06-20 11:32:02 +02:00
state=PresenceState.OFFLINE, status_msg=None
2016-02-18 12:52:33 +01:00
)
changed = True
else:
2017-11-17 02:53:50 +01:00
# We expect to be poked occasionally by the other side.
2016-02-18 12:52:33 +01:00
# This is to protect against forgetful/buggy servers, so that
# no one gets stuck online forever.
if now - state.last_federation_update_ts > FEDERATION_TIMEOUT:
# The other side seems to have disappeared.
2019-06-20 11:32:02 +02:00
state = state.copy_and_replace(state=PresenceState.OFFLINE, status_msg=None)
2016-02-18 12:52:33 +01:00
changed = True
return state if changed else None
def handle_update(prev_state, new_state, is_mine, wheel_timer, now):
"""Given a presence update:
1. Add any appropriate timers.
2. Check if we should notify anyone.
Args:
prev_state (UserPresenceState)
new_state (UserPresenceState)
is_mine (bool): Whether the user is ours
wheel_timer (WheelTimer)
now (int): Time now in ms
Returns:
3-tuple: `(new_state, persist_and_notify, federation_ping)` where:
- new_state: is the state to actually persist
- persist_and_notify (bool): whether to persist and notify people
- federation_ping (bool): whether we should send a ping over federation
"""
user_id = new_state.user_id
persist_and_notify = False
federation_ping = False
# If the users are ours then we want to set up a bunch of timers
# to time things out.
if is_mine:
if new_state.state == PresenceState.ONLINE:
# Idle timer
wheel_timer.insert(
2019-06-20 11:32:02 +02:00
now=now, obj=user_id, then=new_state.last_active_ts + IDLE_TIMER
2016-02-18 12:52:33 +01:00
)
active = now - new_state.last_active_ts < LAST_ACTIVE_GRANULARITY
2019-06-20 11:32:02 +02:00
new_state = new_state.copy_and_replace(currently_active=active)
if active:
wheel_timer.insert(
now=now,
obj=user_id,
2019-06-20 11:32:02 +02:00
then=new_state.last_active_ts + LAST_ACTIVE_GRANULARITY,
)
2016-02-18 12:52:33 +01:00
if new_state.state != PresenceState.OFFLINE:
# User has stopped syncing
wheel_timer.insert(
now=now,
obj=user_id,
2019-06-20 11:32:02 +02:00
then=new_state.last_user_sync_ts + SYNC_ONLINE_TIMEOUT,
2016-02-18 12:52:33 +01:00
)
last_federate = new_state.last_federation_update_ts
if now - last_federate > FEDERATION_PING_INTERVAL:
# Been a while since we've poked remote servers
2019-06-20 11:32:02 +02:00
new_state = new_state.copy_and_replace(last_federation_update_ts=now)
2016-02-18 12:52:33 +01:00
federation_ping = True
else:
wheel_timer.insert(
now=now,
obj=user_id,
2019-06-20 11:32:02 +02:00
then=new_state.last_federation_update_ts + FEDERATION_TIMEOUT,
2016-02-18 12:52:33 +01:00
)
# Check whether the change was something worth notifying about
if should_notify(prev_state, new_state):
2019-06-20 11:32:02 +02:00
new_state = new_state.copy_and_replace(last_federation_update_ts=now)
2016-02-18 12:52:33 +01:00
persist_and_notify = True
return new_state, persist_and_notify, federation_ping
2017-04-11 16:30:02 +02:00
async def get_interested_parties(
store: DataStore, states: List[UserPresenceState]
) -> Tuple[Dict[str, List[UserPresenceState]], Dict[str, List[UserPresenceState]]]:
2017-04-11 16:30:02 +02:00
"""Given a list of states return which entities (rooms, users)
are interested in the given states.
Args:
store
states
2017-04-11 16:30:02 +02:00
Returns:
A 2-tuple of `(room_ids_to_states, users_to_states)`,
2017-04-11 16:30:02 +02:00
with each item being a dict of `entity_name` -> `[UserPresenceState]`
"""
room_ids_to_states = {} # type: Dict[str, List[UserPresenceState]]
users_to_states = {} # type: Dict[str, List[UserPresenceState]]
2017-04-11 16:30:02 +02:00
for state in states:
room_ids = await store.get_rooms_for_user(state.user_id)
2017-04-11 16:30:02 +02:00
for room_id in room_ids:
room_ids_to_states.setdefault(room_id, []).append(state)
# Always notify self
users_to_states.setdefault(state.user_id, []).append(state)
return room_ids_to_states, users_to_states
2017-04-11 16:30:02 +02:00
async def get_interested_remotes(
store: DataStore, states: List[UserPresenceState], state_handler: StateHandler
2020-08-24 20:25:27 +02:00
) -> List[Tuple[Collection[str], List[UserPresenceState]]]:
"""Given a list of presence states figure out which remote servers
should be sent which.
All the presence states should be for local users only.
Args:
store
states
state_handler
Returns:
A list of 2-tuples of destinations and states, where for
each tuple the list of UserPresenceState should be sent to each
destination
"""
2020-08-24 20:25:27 +02:00
hosts_and_states = [] # type: List[Tuple[Collection[str], List[UserPresenceState]]]
2017-04-11 16:28:24 +02:00
# First we look up the rooms each user is in (as well as any explicit
# subscriptions), then for each distinct room we look up the remote
# hosts in those rooms.
room_ids_to_states, users_to_states = await get_interested_parties(store, states)
for room_id, states in room_ids_to_states.items():
hosts = await state_handler.get_current_hosts_in_room(room_id)
2017-04-11 16:30:02 +02:00
hosts_and_states.append((hosts, states))
for user_id, states in users_to_states.items():
host = get_domain_from_id(user_id)
2017-04-11 16:30:02 +02:00
hosts_and_states.append(([host], states))
return hosts_and_states